
www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack Cloud
Computing Cookbook

Over 100 recipes to successfully set up and manage your
OpenStack cloud environments with complete coverage
of Nova, Swift, Keystone, Glance, and Horizon

Kevin Jackson

 BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack Cloud Computing Cookbook

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: September 2012

Production Reference: 1150912

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84951-732-4

www.packtpub.com

Cover Image by Faiz Fattohi (faizfattohi@gmail.com)

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Author
Kevin Jackson

Reviewers
Thierry Carrez

Atul Kumar Jha

Acquisition Editor
Kartikey Pandey

Lead Technical Editor
Azharuddin Sheikh

Technical Editors
Veronica Fernandes

Azharuddin Sheikh

Prasad Dalvi

Joyslita D'Souza

Copy Editor
Brandt D'Mello

Project Coordinator
Yashodhan Dere

Proofreader
Kevin McGowan

Indexer
Tejal R. Soni

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Kevin Jackson is married, with three children. He is an experienced IT professional working
with small businesses and online enterprises. He has extensive experience with various
flavors of Linux and Unix. He specializes in web and cloud infrastructure technologies for
Trader Media Group.

I'd like to thank my wife, Charlene, and the rest of my family for their time,
patience, and encouragement throughout the book.

I'd also like to extend my thanks to the OpenStack community, which has
helped a great deal during my journey with OpenStack. The talent and
support is phenomenal. Without the OpenStack community, there would be
no OpenStack.

A specific mention goes to all those who have made this book possible.
Your comments, guidance, and motivation have made writing this book an
enjoyable experience.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Thierry Carrez is an open source project management expert and has been working on
OpenStack since 2010, as the project's Release Manager, sponsored by Rackspace.

An Ubuntu Core developer and Debian maintainer, he was previously the Technical Lead for
Ubuntu Server edition at Canonical and an Operational Manager for the Gentoo Linux Security
Team. He has also worked as an IT Manager for small and large companies.

Atul Kumar Jha has been an ardent Linux enthusiast and free software evangelist for more
than eight years. He holds an engineering degree in IT and has been working for over four
years on different job roles. He also happens to be one of the co-founders of the free software
event series called mukt.in.

He currently works as an Evangelist for CSS Corp. Pvt. Ltd., Chennai, India, where most of his
work involves free/open software technologies and cloud platforms.

He's been involved with OpenStack since the Bexar release and has been contributing to the
project since then. Most of his contributions have been around documentation, bug reporting,
and helping folks on IRC.

He can be seen lurking on Freenode, under the #ubuntu-server or #openstack
channels, using the handle koolhead17. More information about him can be found at
http://www.atuljha.com.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print and bookmark content

 f On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents
Preface 1
Chapter 1: Starting OpenStack Compute 5

Introduction 6
Creating a sandbox environment with VirtualBox 6
Installing OpenStack Compute packages 9
Configuring database services 12
Configuring OpenStack Compute 14
Stopping and starting Nova services 17
Creating a cloudadmin account and project 19
Installation of command line-tools 20
Uploading a sample machine image 23
Launching your first cloud instance 25
Terminating your instance 29

Chapter 2: Administering OpenStack Compute 31
Introduction 31
Creating and modifying user accounts 32
Managing security groups 34
Creating and managing keypairs 37
Using public cloud images 40
Alternative upload method using euca2ools 42
Creating custom Windows images 46
Creating custom CentOS images 49

Chapter 3: Keystone OpenStack Identity Service 55
Introduction 55
Installing OpenStack Identity Service 56
Configuring roles 57
Creating tenants 59
Adding users 60

www.it-ebooks.info

http://www.it-ebooks.info/

ii

Table of Contents

Defining service endpoints 62
Configuring the service tenant and service users 67
Configuring OpenStack Image Service to use OpenStack Identity Service 70
Configuring OpenStack Compute to use OpenStack Identity Service 72
Using OpenStack Compute with OpenStack Identity Service 73

Chapter 4: Installing OpenStack Storage 77
Introduction 78
Creating an OpenStack Storage sandbox environment 78
Installing the OpenStack Storage services 82
Configuring storage 84
Configuring replication 86
Configuring OpenStack Storage Service 89
Configuring the OpenStack Storage proxy server 90
Configuring Account Server 91
Configuring Container Server 93
Configuring Object Server 95
Making the Object, Account, and Container rings 96
Stopping and starting OpenStack Storage 99
Testing OpenStack Storage 99
Setting up SSL access 102
Configuring OpenStack Storage with OpenStack Identity Service 104

Chapter 5: Using OpenStack Storage 109
Introduction 109
Installing the swift client tool 109
Creating containers 111
Uploading objects 112
Uploading large objects 113
Listing containers and objects 116
Downloading objects 117
Deleting containers and objects 118
Using OpenStack Storage ACLs 120

Chapter 6: Administering OpenStack Storage 123
Introduction 123
Preparing drives for OpenStack Storage 123
Managing the OpenStack Storage cluster with swift-init 125
Checking cluster health 126
OpenStack Storage benchmarking 128
Managing capacity 129
Removing nodes from a cluster 134

www.it-ebooks.info

http://www.it-ebooks.info/

iii

Table of Contents

Detecting and replacing failed hard drives 135
Collecting usage statistics 136

Chapter 7: Glance OpenStack Image Service 141
Introduction 141
Installing OpenStack Image Service 141
Configuring OpenStack Image Service with MySQL 143
Configuring OpenStack Compute with OpenStack Image Service 144
Configuring OpenStack Image Service with OpenStack Storage 145
Managing images with OpenStack Image Service 147
Registering a remotely stored image 151

Chapter 8: Nova Volumes 153
Introduction 153
Configuring nova-volume services 154
Configuring OpenStack Compute for nova-volume 157
Creating volumes 158
Attaching volumes to instances 161
Detaching volumes from an instance 164
Deleting volumes 166

Chapter 9: Horizon OpenStack Dashboard 167
Introduction 167
Installing OpenStack Dashboard 168
Keypair management in OpenStack Dashboard 169
Security group management by using OpenStack Dashboard 174
Launching instances by using OpenStack Dashboard 178
Terminating instances by using OpenStack Dashboard 181
Connecting to instances by using OpenStack Dashboard and VNC 183
Adding new tenants by using OpenStack Dashboard 184
User management by using OpenStack Dashboard 188

Chapter 10: OpenStack Networking 195
Introduction 195
Configuring Flat networking 196
Configuring Flat networking with DHCP 198
Configuring VLAN Manager networking 201
Configuring per-project (tenant) IP ranges 203
Automatically assigning fixed networks to tenants 205
Modifying a tenant's fixed network 206
Manually associating floating IPs to instances 207
Manually disassociating floating IPs from instances 209
Automatically assigning floating IPs 210

www.it-ebooks.info

http://www.it-ebooks.info/

iv

Table of Contents

Chapter 11: In the Datacenter 213
Introduction 213
Installing MAAS for bare-metal provisioning 214
Using MAAS for bare-metal provisioning of hosts 215
Installing and configuring Juju 219
Installing OpenStack services using Juju 220
Increasing OpenStack Compute capacity 223
MySQL clustering using Galera 225
Configuring HA Proxy for MySQL Galera load balancing 232
Increasing resilience of OpenStack services 236
Bonding network interfaces for redundancy 246

Chapter 12: Monitoring 249
Introduction 249
Monitoring Compute services with Munin 249
Monitoring instances using Munin and Collectd 255
Monitoring the storage service using StatsD/Graphite 260
Monitoring MySQL with Hyperic 265

Chapter 13: Troubleshooting 273
Introduction 273
Checking OpenStack Compute Services 273
Understanding logging 276
Troubleshooting OpenStack Compute Services 278
Troubleshooting OpenStack Storage Service 283
Troubleshooting OpenStack Authentication 284
Submitting bug reports 287
Getting help from the community 291

Index 293

www.it-ebooks.info

http://www.it-ebooks.info/

Preface
OpenStack is an open source software for building public and private clouds, born from
Rackspace and NASA. It is now a global success and is developed and supported by scores
of people around the globe and backed by some of the leading players in the cloud space
today. This book is specifically designed to quickly help you get up to speed with OpenStack
and give you the confidence and understanding to roll it out into your own datacenters. From
test installations of OpenStack running under VirtualBox to recipes that help you move out
to production environments, this book covers a wide range of topics that help you install and
configure a private cloud. This book will show you:

 f How to install and configure all the core components of OpenStack to run an
environment that can be managed and operated just like AWS, HP Cloud Services,
and Rackspace

 f How to master the complete private cloud stack, from scaling out Compute resources
to managing object storage services for highly redundant, highly available storage

 f Practical, real-world examples of each service built upon in each chapter, allowing you
to progress with the confidence that they will work in your own environments

OpenStack Cloud Computing Cookbook gives you clear, step-by-step instructions to install
and run your own private cloud successfully. It is full of practical and applicable recipes that
enable you to use the latest capabilities of OpenStack and implement them.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

2

What this book covers
Chapter 1, Starting OpenStack Compute, teaches you how to set up and use OpenStack
Compute running within a VirtualBox environment.

Chapter 2, Administering OpenStack Compute, teaches you how to manage user accounts and
security groups as well as how to deal with cloud images to run in an OpenStack environment.

Chapter 3, Keystone OpenStack Identity Service, takes you through installation and
configuration of Keystone, which underpins all of the other OpenStack services.

Chapter 4, Installing OpenStack Storage, teaches you how to configure and use OpenStack
Storage running within a VirtualBox environment.

Chapter 5, Using OpenStack Storage, teaches you how to use the storage service for storing
and retrieving files and objects.

Chapter 6, Administering OpenStack Storage, takes you through how to use tools and
techniques that can be used for running OpenStack Storage within datacenters.

Chapter 7, Glance OpenStack Image Service, teaches you how to upload and modify images
(templates) for use within an OpenStack environment.

Chapter 8, Nova Volumes, teaches you how to install and configure the persistent storage
service for use by instances running in an OpenStack Compute environment.

Chapter 9, Horizon OpenStack Dashboard, teaches you how to install and use the web
user interface to perform tasks such as creating users, modifying security groups, and
launching instances.

Chapter 10, OpenStack Networking, helps you understand the networking options currently
available as well as teaching you how to configure an OpenStack environment so that
instances are accessible on the network.

Chapter 11, In the Datacenter, takes you through understanding how to do bare-metal
provisioning, scale up OpenStack, and introduces you to adding resilience to our OpenStack
installations for high availability.

Chapter 12, Monitoring, shows you how to install and configure various open source tools for
monitoring an OpenStack installation.

Chapter 13, Troubleshooting, takes you through an understanding of the logs and where to
get help when encountering issues while running an OpenStack environment.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

3

What you need for this book
To use this book, you will need access to computers or servers that have hardware
virtualization capabilities. To set up the lab environments you will need Oracle's VirtualBox
installed. You will also need access to an Ubuntu 12.04 ISO image, as the methods presented
detail steps for Ubuntu environments.

Who this book is for
This book is aimed at system administrators and technical architects moving from a
virtualized environment to cloud environments who are familiar with cloud computing
platforms. Knowledge of virtualization and managing Linux environments is expected.
Prior knowledge or experience of OpenStack is not required, although beneficial.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "Similar information is presented by the nova list
and nova show commands".

A block of code is set as follows:

bind_port = 443
cert_file = /etc/swift/cert.crt
key_file = /etc/swift/cert.key

Any command-line input or output is written as follows:

sudo apt-get update

sudo apt-get -y install qemu-kvm cloud-utils

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "In the INSTANCE section, we
get details of our running instance".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

4

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/support, selecting
your book, clicking on the errata submission form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will be
uploaded to our website, or added to any list of existing errata, under the Errata section of
that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

www.it-ebooks.info

http://www.it-ebooks.info/

1
Starting OpenStack

Compute
In this chapter, we will cover:

 f Creating a sandbox environment with VirtualBox

 f Installing OpenStack Compute packages

 f Configuring database services

 f Configuring OpenStack Compute

 f Stopping and starting Nova services

 f Creating a cloudadmin account and project

 f Installation of command-line tools

 f Uploading a sample machine image

 f Launching your first cloud instance

 f Terminating your instance

www.it-ebooks.info

http://www.it-ebooks.info/

Starting OpenStack Compute

6

Introduction
OpenStack Compute, also known as Nova, is the compute component of the open source
cloud operating system, OpenStack. It is the component that allows you to run multiple
instances of virtual machines on any number of hosts running the OpenStack Compute
service, allowing you to create a highly scalable and redundant cloud environment. The open
source project strives to be hardware and hypervisor agnostic. Nova compute is analogous to
Amazon's EC2 (Elastic Compute Cloud) environment and can be managed in a similar way,
demonstrating the power and potential of this service.

This chapter gets you up to speed quickly by giving you the information you need to create a
cloud environment running entirely from your desktop machine. At the end of this chapter, you
will be able to create and access virtual machines using the same command line tools you
would use to manage Amazon's own EC2 compute environment.

Creating a sandbox environment
with VirtualBox

Creating a sandbox environment using VirtualBox allows us to discover and experiment with
the OpenStack Compute service, known as Nova. VirtualBox gives us the ability to spin up
virtual machines and networks without affecting the rest of our working environment and is
freely available from http://www.virtualbox.org for Windows, Mac OSX, and Linux.
This test environment can then be used for the rest of this chapter.

It is assumed the computer you will be using to run your test environment in has enough
processing power and has hardware virtualization support (modern AMDs and Intel iX
processors) with at least 4 GB RAM. Remember we're creating a virtual machine that itself
will be used to spin up virtual machines, so the more RAM you have, the better.

Getting ready
To begin with, we must download VirtualBox from http://www.virtualbox.org/ and
then follow the installation procedure once this has been downloaded.

We will also need to download the Ubuntu 12.04 LTS Server ISO CD-ROM image from
http://www.ubuntu.com/.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

7

How to do it...
To create our sandbox environment within VirtualBox, we will create a single virtual machine
that allows us to run all of the OpenStack Compute services required to run cloud instances.
This virtual machine will be configured with at least 2 GB RAM and 20 GB of hard drive
space and have three network interfaces. The first will be a NAT interface that allows our
virtual machine to connect to the network outside of VirtualBox to download packages, a
second interface which will be the public interface of our OpenStack Compute host, and
the third interface will be for our private network that OpenStack Compute uses for internal
communication between different OpenStack Compute hosts.

Carry out the following steps to create the virtual machine that will be used to run OpenStack
Compute services:

1. In order to use a public and private network in our OpenStack environment, we first
create these under VirtualBox. To do this, we can use the VirtualBox GUI by going
to System Preferences then Network or use the VBoxManage command from our
VirtualBox install and run the following commands in a shell on our computer to
create two HostOnly interfaces, vboxnet0 and vboxnet1:
Public Network vboxnet0 (172.16.0.0/16)

VBoxManage hostonlyif create

VBoxManage hostonlyif ipconfig vboxnet0 --ip 172.16.0.254
--netmask 255.255.0.0

Private Network vboxnet1 (10.0.0.0/8)

VBoxManage hostonlyif create

VBoxManage hostonlyif ipconfig vboxnet1 --ip 10.0.0.254 --netmask
255.0.0.0

2. In VirtualBox, create a new virtual machine with the following specifications:

 � 1 CPU

 � 2048 MB

 � 20 GB Hard Disk

 � Three Network Adapters, with the attached Ubuntu 12.04 ISO

This can either be done using the VirtualBox New Virtual Machine Wizard or by
running the following commands in a shell on our computer:

Create VirtualBox Machine

VboxManage createvm --name openstack1 --ostype Ubuntu_64
--register

VBoxManage modifyvm openstack1 --memory 2048 --nic1 nat
--nic2 hostonly --hostonlyadapter2 vboxnet0 --nic3 hostonly
--hostonlyadapter3 vboxnet1

www.it-ebooks.info

http://www.it-ebooks.info/

Starting OpenStack Compute

8

Create CD-Drive and Attach ISO
VBoxManage storagectl openstack1 --name "IDE Controller" --add ide
--controller PIIX4 --hostiocache on --bootable on
VBoxManage storageattach openstack1 --storagectl "IDE Controller"
--type dvddrive --port 0 --device 0 --medium Downloads/ubuntu-
12.04-server-amd64.iso

Create and attach SATA Interface and Hard Drive
VBoxManage storagectl openstack1 --name "SATA Controller" --add
sata --controller IntelAHCI --hostiocache on --bootable on
VBoxManage createhd --filename openstack1.vdi --size 20480
VBoxManage storageattach openstack1 --storagectl "SATA Controller"
--port 0 --device 0 --type hdd --medium openstack1.vdi

3. We are now ready to power on our OpenStack1 node. Do this by selecting
OpenStack1 Virtual Machine and then clicking on the Start button or by
running the following command:
VBoxManage startvm openstack1 --type gui

4. This will take us through a standard text-based Ubuntu installer, as this is the server
edition. Choose appropriate settings for your region and choose Eth0 as the main
interface (this is the first interface in your VirtualBox VM settings—our NATed interface).
When prompted for software selection, just choose SSH Server and continue. For a
user, create a user named openstack and the password of openstack. This will
help with using this book to troubleshoot your own environment.

5. Once installed, log in as the openstack user.

6. We can now configure networking on our OpenStack Compute node. To do this we
will create a static address on the second interface, eth1, which will be the public
interface and also configure our host to bring up eth2 without an address, as this
interface will be controlled by OpenStack to provide the private network. To do this,
edit the /etc/network/interfaces file with the following contents:
The loopback network interface
auto lo
iface lo inet loopback

The primary network interface
auto eth0
iface eth0 inet dhcp

Public Interface
auto eth1
iface eth1 inet static
 address 172.16.0.1
 netmask 255.255.0.0
 network 172.16.0.0
 broadcast 172.16.255.255

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

9

Private Interface
auto eth2
iface eth2 inet manual
 up ifconfig eth2 up

Remember to edit the /etc/network/interfaces file
with root privileges.

7. Save the file and bring up the interfaces with the following commands:

sudo ifup eth1

sudo ifup eth2

Congratulations! We have successfully created the
VirtualBox virtual machine running Ubuntu, which is able
to run OpenStack Compute.

How it works...
What we have done is created a virtual machine that is the basis of our OpenStack Compute
host. It has the necessary networking in place to allow us to access this virtual machine from
our host personal computer.

There's more...
There are a number of virtualization products available that are suitable for trying OpenStack,
for example, VMware Server and VMware Player are equally suitable. With VirtualBox, you can
also script your installations using a tool named Vagrant. While outside the scope of this book,
the steps provided here allow you to investigate this option at a later date.

Installing OpenStack Compute packages
Now that we have a machine for running OpenStack, we can install the appropriate
packages for running OpenStack Compute, which will allow us to spawn its own virtual
machine instances.

To do this, we will create a machine that runs all the appropriate services for running
OpenStack Nova. The services are as follows:

 f nova-compute: The main package for running the virtual machine instances

 f nova-scheduler: The scheduler picks the server for fulfilling the request to run
the instance

www.it-ebooks.info

http://www.it-ebooks.info/

Starting OpenStack Compute

10

 f nova-api: Service for making requests to OpenStack to operate the services within
it; for example, you make a call to this service to start up a new Nova instance

 f nova-network: Network service that controls DHCP, DNS, and Routing

 f nova-objectstore: File storage service

 f nova-common: Common Python libraries that underpin all of the
OpenStack environment

 f nova-cert: The Nova certificate management service, used for authentication
to Nova

 f glance: Image Registry and Delivery service

 f rabbitmq-server: Message queue service

 f mysql-server: Database server that holds the data for all OpenStack services such
as Compute nodes available, instances running, state, and so on

 f ntp: Network Time Protocol is essential in a multi-node environment and that the
nodes have the same time (tolerance is within five seconds and outside of this you
get unpredictable results)

 f dnsmasq: DNS forwarder and DHCP service that allocates the addresses to your
instances in your environment

Getting ready
Ensure that you are logged in to the openstack1 VirtualBox virtual machine as the
openstack user.

How to do it...
Installation of OpenStack under Ubuntu 12.04 is simply achieved using the familiar apt-get
tool due to the OpenStack packages being available from the official Ubuntu repositories.

1. We can install the required packages with the following command:
sudo apt-get update

sudo apt-get -y install rabbitmq-server nova-api nova-objectstore
nova-scheduler nova-network nova-compute nova-cert glance qemu
unzip

2. Once the installation has completed, we need to install and configure NTP as follows:
sudo apt-get -y install ntp

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

11

3. NTP is important in any multi-node environment and in the OpenStack environment it
is a requirement that server times are kept in sync. Although we are configuring only
one node, not only will accurate time-keeping help with troubleshooting, but also it
will allow us to grow our environment as needed in the future. To do this we edit
/etc/ntp.conf with the following contents:
Replace ntp.ubuntu.com with an NTP server on your network
server ntp.ubuntu.com
server 127.127.1.0
fudge 127.127.1.0 stratum 10

4. Once ntp has been configured correctly we restart the service to pick up the change:

sudo service ntp restart

How it works...
Installation of OpenStack Nova from the main Ubuntu package repository represents a very
straightforward and well-understood way of getting OpenStack onto our Ubuntu server. This
adds a greater level of certainty around stability and upgrade paths by not deviating away
from the main archives.

There's more...
There are various ways to install OpenStack, from source code building to installation from
packages, but this represents the easiest and most consistent method available. There are
also alternative releases of OpenStack available. The ones available from Ubuntu 12.04 LTS
repositories are known as Essex and represent the latest stable release at the time of writing.

Using an alternative release
Deviating from stable releases is appropriate when you are helping develop or debug
OpenStack, or require functionality that is not available in the current release. To enable
different releases, add different Personal Package Archives (PPA) to your system.
To view the OpenStack PPAs, visit http://wiki.openstack.org/PPAs. To use them
we first install a pre-requisite tool that allows us to easily add PPAs to our system:

sudo apt-get update

sudo apt-get -y install python-software-properties

www.it-ebooks.info

http://www.it-ebooks.info/

Starting OpenStack Compute

12

To use a particular release PPA we issue the following commands:

 f For Milestones (periodic releases leading up to a stable release):
sudo add-apt-repository ppa:openstack-ppa/milestone
sudo apt-get update

 f For Bleeding Edge (Master Development Branch):

sudo add-apt-repository ppa:openstack-ppa/bleeding-edge
sudo apt-get update

Once you have configured apt to look for an alternative place for packages, you can repeat
the preceding process for installing packages if you are creating a new machine based on a
different package set, or simply type:

sudo apt-get upgrade

This will make apt look in the new package archive areas for later releases of packages
(which they will be as they are more recent revisions of code and development).

Configuring database services
OpenStack supports a number of database backends—an internal Sqlite database (the
default), MySQL, and Postgres. Sqlite is used only for testing and is not supported or used
in a production environment, whereas MySQL or Postgres is down to the experience of the
database staff. For the remainder of this book we shall use MySQL.

Setting up MySQL is easy and allows for you to grow this environment as you progress through
the chapters of this book.

Getting ready
Ensure that you are logged in to the openstack1 VirtualBox virtual machine as the
openstack user.

How to do it...
1. We first set some options to pre-seed our installation of MySQL to streamline the

process. This includes the default root password which we'll set as openstack.
Complete this step as the root user.
cat <<MYSQL_PRESEED | debconf-set-selections
mysql-server-5.1 mysql-server/root_password password openstack
mysql-server-5.1 mysql-server/root_password_again password
openstack
mysql-server-5.1 mysql-server/start_on_boot boolean true
MYSQL_PRESEED

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

13

The steps outlined previously allow for a non-interactive installation
of MySQL. You can omit this step, but during installation, it will ask
for the root password. If you do opt for an interactive install, set
openstack as the password for the root user.

2. We can now install and run MySQL by executing the following commands:
sudo apt-get update

sudo apt-get -y install mysql-server

sudo sed -i 's/127.0.0.1/0.0.0.0/g' /etc/mysql/my.cnf

sudo service mysql restart

3. Once that's done we then configure an appropriate database user, called nova, and
privileges for use by OpenStack Compute.
MYSQL_PASS=openstack

mysql -uroot -p$MYSQL_PASS -e 'CREATE DATABASE nova;'

mysql -uroot -p$MYSQL_PASS -e "GRANT ALL PRIVILEGES ON nova.* TO
'nova'@'%'"

mysql -uroot -p$MYSQL_PASS -e "SET PASSWORD FOR 'nova'@'%' =
PASSWORD('$MYSQL_PASS');"

4. We now simply reference our MySQL server in our /etc/nova/nova.conf file to
use MySQL by adding in the --sql_connection flag.

--sql_connection=mysql://nova:openstack@172.16.0.1/nova

How it works...
MySQL is an essential service to OpenStack as a number of services rely on it. Configuring
MySQL appropriately ensures your servers operate smoothly. We first configured the Ubuntu
debconf utility to set some defaults for our installation so that when MySQL gets installed,
it finds values for the root user's password and so skips the part where it asks you for this
information during installation. We then added in a database called nova that will eventually
be populated by tables and data from the OpenStack Compute services and granted all
privileges to the nova database user so that user can use it.

Finally, we configured our OpenStack Compute installation to specify these details so they can
use the nova database.

See also
 f The MySQL clustering using Galera recipe in Chapter 11, In the Datacenter

www.it-ebooks.info

http://www.it-ebooks.info/

Starting OpenStack Compute

14

Configuring OpenStack Compute
The /etc/nova/nova.conf file is a very important file and is referred to many times in this
book. This file informs each OpenStack Compute service how to run and what to connect to in
order to present OpenStack to our end users. This file will be replicated amongst our nodes as
our environment grows.

How to do it...
To run our sandbox environment, we will configure OpenStack Compute so that it is accessible
from our underlying host computer. We will have the API service (the service our client tools
talk to) listen on our public interface and configure the rest of the services to run on the
correct ports. The complete nova.conf file as used by the sandbox environment is laid out
next and an explanation of each line (known as flags) follows.

1. First, we amend the /etc/nova/nova.conf file to have the following contents:
--dhcpbridge_flagfile=/etc/nova/nova.conf
--dhcpbridge=/usr/bin/nova-dhcpbridge
--logdir=/var/log/nova
--state_path=/var/lib/nova
--lock_path=/var/lock/nova
--force_dhcp_release
--iscsi_helper=tgtadm
--libvirt_use_virtio_for_bridges
--connection_type=libvirt
--root_helper=sudo nova-rootwrap
--ec2_private_dns_show_ip
--sql_connection=mysql://nova:openstack@172.16.0.1/nova
--use_deprecated_auth
--s3_host=172.16.0.1
--rabbit_host=172.16.0.1
--ec2_host=172.16.0.1
--ec2_dmz_host=172.16.0.1
--public_interface=eth1
--image_service=nova.image.glance.GlanceImageService
--glance_api_servers=172.16.0.1:9292
--auto_assign_floating_ip=true
--scheduler_default_filters=AllHostsFilter

2. For the openstack-compute service we specify that we are using
software virtualization by specifying the following code in /etc/nova/
nova-compute.conf:

--libvirt_type=qemu

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

15

3. We then issue a command that ensures the database has the correct tables schema
installed and initial data populated with the right information:
sudo nova-manage db sync

4. We can then proceed to create the private network that will be used by our
OpenStack Compute instances internally:
sudo nova-manage network create vmnet --fixed_range_v4=10.0.0.0/8
--network_size=64 --bridge_interface=eth2

5. And finally we can create the public network that will be used to access the instances
from our personal computer:

sudo nova-manage floating create --ip_range=172.16.1.0/24

How it works...
The following are the flags that are present in our /etc/nova/nova.conf configuration
file--dhcpbridge_flatfile= is the location of the configuration (flag) file for the
dhcpbridge service.

 f --dhcpbridge= is the location of the dhcpbridge service.

 f --force_dhcp_release releases the DHCP assigned IP address when the
instance is terminated.

 f --logdir=/var/log/nova writes all service logs to here. This area will be written
to as the root user.

 f --state_path=/var/lib/nova is an area on your host that Nova will use to
maintain various states about the running service.

 f --lock_path=/var/lock/nova is where Nova can write its lock files.

 f --connection_type=libvirt specifies the connection to use libvirt.

 f --libvirt_use_virtio_for_bridges uses the virtio driver for bridges.

 f --root_helper=sudo nova-rootwrap specifies a helper script to allow the
OpenStack Compute services to obtain root privileges.

 f --use_deprecated_auth tells Nova to not use the new Keystone
authentication service.

 f --sql_connection=mysql://root:nova@172.16.0.1/nova is our SQL
Connection line created in the previous section. It denotes the user:password@
Host Address/database name (in our case nova).

 f --s3_host=172.16.0.1 tells OpenStack services where to look for the nova-
objectstore service.

 f --rabbit_host=172.16.0.1 tells OpenStack services where to find the
rabbitmq message queue service.

www.it-ebooks.info

http://www.it-ebooks.info/

Starting OpenStack Compute

16

 f --ec2_host=172.16.0.1 denotes the external IP address of the
nova-api service.

 f --ec2_dmz_host=172.16.0.1 denotes the internal IP address of the
nova-api service.

 f --public_interface=eth1 is the interface on your hosts running nova that your
clients will use to access your instances.

 f --image_service=nova.image.glance.GlanceImageService specifies that
for this installation we'll be using Glance for managing our images.

 f --glance_api_servers=172.16.0.1:9292 specifies the server that is running
the Glance Imaging service.

 f --auto_assign_floating_ip=true specifies that when an instance is created,
it automatically gets an IP address assigned from the range created in step 5 in the
previous section.

 f ----scheduler_default_filters=AllHostsFilter specifies the scheduler
can send requests to all compute hosts.

 f --libvirt_type=qemu sets the virtualization mode. Qemu is software
virtualization, which is required for running under VirtualBox. Other options include
kvm and xen.

The networking is set up so that internally the guests are given an IP in the range 10.0.0.0/8.
We specified that we would use only 64 addresses in this network range. Be mindful of how
many you want. It is easy to create a large range of addresses but it will also take a longer
time to create these in the database, as each address is a row in the nova.fixed_ips table
where these ultimately get recorded and updated. Creating a small range now allows you to
try OpenStack Compute and later on you can extend this range very easily.

The public range of IP addresses are created in the 172.16.1.0/24 address space. Remember
we created our VirtualBox Host-Only adapter with access to 172.16.0.0/16 – this means we
will have access to the running instances in that range.

There's more...
There are a wide variety of options that are available for configuring OpenStack Compute.
These will be explored in more detail in later chapters as the nova.conf file underpins most
of OpenStack Compute services.

Information online regarding flags
You can find a description of each flag at the OpenStack website at
http://wiki.openstack.org/NovaConfigOptions.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

17

Stopping and starting Nova services
Now that we have configured our OpenStack Compute installation, it's time to start our
services so that they're running on our OpenStack1 Virtual Machine ready for us to launch
our own private cloud instances.

Getting ready
If you haven't done so already, ssh to our virtual machine as the openstack user—either using
a command-line tool or a client, such as PuTTY if you're using Windows.

ssh openstack@172.16.0.1

This ensures that we can access our virtual machine, as we will need access to spin up
instances from your personal computer.

The services that run as part of our openstack1 setup are:

 f nova-compute

 f nova-api

 f nova-network

 f nova-objectstore

 f nova-scheduler

 f nova-cert

 f libvirt-bin

 f glance-registry

 f glance-api

How to do it...
Carry out the following steps to stop the OpenStack Compute services:

1. As part of the package installation, the OpenStack Compute services start up by
default so the first thing to do is to stop them by using the following commands:
sudo stop nova-compute

sudo stop nova-network

sudo stop nova-api

sudo stop nova-scheduler

sudo stop nova-objectstore

sudo stop nova-cert

www.it-ebooks.info

http://www.it-ebooks.info/

Starting OpenStack Compute

18

To stop all of the OpenStack Compute services use the
following command:
ls /etc/init/nova-* | cut -d '/' -f4 | cut -d
'.' -f1 | while read S; do sudo stop $S; done

2. There are also other services that we installed that are stopped in the same way:

sudo stop libvirt-bin

sudo stop glance-registry

sudo stop glance-api

Carry out the following steps to start the OpenStack Compute services:

1. Starting the OpenStack Compute services is done in a similar way to stopping them:
sudo start nova-compute

sudo start nova-network

sudo start nova-api

sudo start nova-scheduler

sudo start nova-objectstore

sudo start nova-cert

To start all of the OpenStack Compute services use the
following command:

ls /etc/init/nova-* | cut -d '/' -f4 | cut -d
'.' -f1 | while read S; do sudo start $S; done

2. There are also other services that we installed that are started in the same way:

sudo start libvirt-bin

sudo start glance-registry

sudo start glance-api

How it works...
Stopping and starting OpenStack Compute services under Ubuntu are controlled using
upstart scripts. This allows us to simply control the running services by the start and
stop commands followed by the service we wish to control.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

19

Creating a cloudadmin account and project
As part of our installation we specified --use_deprecated_auth, which means that we
are using a simple way of storing users, roles, and projects within our OpenStack Compute
environment. This is an ideal way to start working with OpenStack within a small development
environment such as our sandbox. For larger, production ready environments, Keystone is
used, which is covered in Chapter 6, Administering OpenStack Storage.

The cloudadmin account group is the equivalent of the root user on a Unix/Linux host. It
has access to all aspects of your Nova cloud environment and so the first account we need to
create must have this credential.

Each user has a project—a tenancy in the cloud that has access to certain resources and
network ranges. In order to spin up instances in your private cloud environment, a user is
assigned to a project. This project can then be kept separate from other users' projects, and
equally other users can belong to the same project.

Getting ready
The nova-manage command must be run with root privileges so we execute the nova-
manage command prefixed with the sudo command.

How to do it...
1. We first need to create an admin user which we will call openstack as follows:

sudo nova-manage user admin openstack

2. We then assign the openstack user to the cloudadmin role as follows:

sudo nova-manage role add openstack cloudadmin

3. Once we have that role assigned, which is appropriate for this section to run as the
cloudadmin role, we can create a project for this user that we will call cookbook.
We do this as follows:
sudo nova-manage project create cookbook openstack

4. At this point, we have all the required files set up for us to begin to use OpenStack
Compute, but we need to ship these over to our underlying host computer (the
computer running the VirtualBox software) so that we can access OpenStack
Compute from there. OpenStack provides an option to package these credential files
up as a ZIP file for this purpose.
sudo nova-manage project zipfile cookbook openstack

5. The result of this is a file called nova.zip in your current directory.

www.it-ebooks.info

http://www.it-ebooks.info/

Starting OpenStack Compute

20

How it works...
We first create the initial user, which is an administrator of the cloud project. This admin
user is then assigned elevated privileges known as cloudadmin by use of the nova-manage
command. The nova-manage command is used throughout this book and is instrumental
in administering OpenStack Compute. The nova-manage command must be executed with
root privileges so we always run this with sudo.

We then create a project for our user to operate in. This is a tenancy in our OpenStack
Compute environment that has access to various resources such as disks and networks. As
we are cloudadmin, we have access to all resources and this is sufficient for this section.

Once the project has been created, the details of the project are zipped up ready for
transporting back to the client that will operate the cloud.

Installation of command line-tools
Management of OpenStack Compute from the command line is achieved by using euca2ools
and Nova Client. Euca2ools is a suite of tools that work with the EC2-API presented by
OpenStack. This is the same API that allows you to manage your AWS EC2 cloud instances,
start them up and terminate them, create security groups, and troubleshoot your instances.
The Nova Client tool uses the OpenStack Compute API, OS-API. This API allows greater control
of our OpenStack environment. Understanding these tools is invaluable in understanding the
flexibility and power of cloud environments, not least allowing you to create powerful scripts to
manage your cloud.

Getting ready
The tools will be installed on your host computer and it is assumed that you are running a
version of Ubuntu, which is the easiest way to get hold of the Nova Client and euca2ools
packages ready to manage your cloud environment.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

21

How to do it...
The euca2ools and Nova Client packages are conveniently available from the Ubuntu
repositories. If the host PC isn't running Ubuntu, creating a Ubuntu virtual machine alongside
our OpenStack Compute virtual machine is a convenient way to get access to these tools.

1. As a normal user on our Ubuntu machine, type the following commands:
sudo apt-get update

sudo apt-get install euca2ools python-novaclient unzip

2. Now the tools have been installed, we need to grab the nova.zip file that we
created at the end of the previous section and unpack this on your Ubuntu
computer. We do this as follows:
cd
mkdir openstack
cd openstack

scp openstack@172.16.0.1:nova.zip .
unzip nova.zip

3. We can now source the credentials file named novarc into our shell environment
with the following command and set up our environment to allow us to use our
command-line tools to communicate with OpenStack:
. novarc

4. We now must create a keypair that allows us to access our cloud instance. Keypairs
are SSH private and public key combinations that together allow you to access a
resource. You keep the private portion safe, but you're able to give the public key to
anyone or any computer without fear or compromise to your security, but only your
private portion will match enabling you to be authorized. Cloud instances rely on
keypairs for access.

The following commands will create a keypair named openstack:

To create our keypair using euca2ools, use the following commands:
euca-add-keypair openstack > openstack.pem

chmod 0600 *.pem

5. To create your keypair using Nova Client, use the following commands:

nova keypair-add openstack > openstack.pem

chmod 0600.pem

www.it-ebooks.info

http://www.it-ebooks.info/

Starting OpenStack Compute

22

How it works...
Using either euca2ools or Nova Client on Ubuntu is a very natural way of managing our
OpenStack Cloud environment. We open up a shell and copy the created nova.zip file over
from the previous section. When we unpack it, we can source in the contents of the novarc
file—the file that contains the details on our Access Key, Secret Key (two vital pieces of
information required to access our cloud environment using the EC2-API), Nova API Key
and Nova Username (required for accessing the OS-API) as well as certificate files, which
are used for uploading images to our environment and addresses to use when connecting
to our environment.
When you look at your environment now with the env command you will see these details,
for example:

By also adding a keypair at this point, we can be ready to launch our instance. The
euca-add-keypair and nova add-keypair commands create a public and private key
combination for you. It stores the public key in the database references by the name you gave
it, in our case we matched our username, openstack, and output the details of the private
key. We must keep the private key safe. If you lose it or delete it, the keypair will be invalid.
A requirement to SSH, which we will use to connect to our instance later on, is to have the
private key with permissions that are readable/writeable by the owner only, so we set this
with the chmod command.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

23

Uploading a sample machine image
Now that we have a running OpenStack Compute environment, it's time to upload an image
for us to use. An image is a machine template, which is cloned when we spin up new cloud
instances. Images used in Amazon, known as AMIs (or Amazon Machine Images) can often be
used in OpenStack. For this next section, we will use an Ubuntu Enterprise Cloud image, which
can be used in both Amazon and our OpenStack Compute cloud instance.

Getting ready
These steps are to be carried out on your Ubuntu machine under the user that has access
to your OpenStack Compute environment credentials (as created in the Installation of
command-line tools recipe).

Ensure you have sourced your OpenStack Compute environment credentials as follows:

cd ~/openstack

. novarc

How to do it...
To upload an image into our OpenStack Compute environment, we perform the
following steps:

1. We first download the Ubuntu UEC Cloud Image from ubuntu.com:
wget http://uec-images.ubuntu.com/releases/precise/release/ubuntu-
12.04-server-cloudimg-i386.tar.gz

2. Once downloaded, we need to install the cloud-utils package that provides tools
to upload images to our OpenStack Compute environment:
sudo apt-get update

sudo apt-get -y install cloud-utils

3. We can then proceed to upload this to our OpenStack Compute installation using the
cloud-publish-tarball command provided by the cloud-utils package.
cloud-publish-tarball ubuntu-12.04-server-cloudimg-i386.tar.gz
images i386

www.it-ebooks.info

http://www.it-ebooks.info/

Starting OpenStack Compute

24

You should see output such as the following:

4. That's it. We now have an image that is ready for use in our OpenStack cloud. This
can be checked by issuing the following commands:

 � For euca2ools:
euca-describe-images

You should see output like the following:

 � For Nova Client:

nova image-list

You should see output like the following:

The key information from the output are the aki and ami (and optionally ari) IDs from the
euca2ools output, and the ID string generated for the Nova Client output. We use this
information to launch our cloud instances.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

25

How it works...
We first downloaded a Ubuntu UEC image that has been created to run in our OpenStack
environment. This tarball contained two components that were needed to run our instance:
a kernel and a machine image. We used the command-line tool, cloud-publish-tarball from
the cloud-utils package to upload this to our Glance service, which populated the
Nova-Objectstore service with the machine images. Note that we specified an option here
named images. This references a bucket in our objects tore, which is a place on the disk(s)
where this image can be found by the OpenStack Compute service.

We can interrogate this image store at any point by issuing the euca-describe-images or
nova image-list commands.

When we list the images, the information that gets used when spinning up cloud instances are
the ami-, aki-, and eri- values for use with euca2ools and the image IDs for use with the
Nova Client tools. Note that a RAM disk doesn't always need to be present for a cloud instance
to work (as in the previous example) but sometimes you may come across cloud images that
have these.

See also
 f The Using public cloud images recipe in Chapter 2, Administering

OpenStack Compute

Launching your first cloud instance
Now that we have a running OpenStack Compute environment and a machine image to
use, its now time to spin up our first cloud instance! This section explains how to use the
information from euca-describe-images or the nova image-list commands to
reference this on the command line to launch the instance that we want.

Getting ready
These steps are to be carried out on our Ubuntu machine under the user that has access
to our OpenStack Compute credentials (as created in the Installation of command-line
tools recipe).

www.it-ebooks.info

http://www.it-ebooks.info/

Starting OpenStack Compute

26

Before we spin up our first instance, we must create the default security settings that define
the access rights. We do this only once (or when we need to adjust these) using either the
euca-authorize command under euca2ools or the nova secgroup-add-rule command
under Nova Client. The following set of commands gives us SSH access (Port 22) from any IP
address and also allows us to ping the instance to help with troubleshooting. Note the default
group and its rules are always applied if no security group is mentioned on the command line.

 f euca2ools;
euca-authorize default -P tcp -p 22 -s 0.0.0.0/0

euca-authorize default -P icmp -t -1:-1

 f Nova Client:

nova secgroup-add-rule default tcp 22 22 0.0.0.0/0

nova secgroup-add-rule default icmp -1 -1 0.0.0.0/0

How to do it...
1. From our output of euca-describe-images or nova get-images we were

presented with two images. One was the machine image and the other was the
kernel image. To launch our instance, we need this information and we specify this on
the command line.

To launch an instance using euca2ools, we issue the following, specifying the
machine image ID:
euca-run-instances ami-00000002 -t m1.small -k openstack

To launch an instance using Nova Client tools, we issue the following, using the ID of
our image that is named precise-server-cloudimg-i386.img:

nova boot myInstance --image 0e2f43a8-e614-48ff-92bd-be0c68da19f4
--flavor 2 --key_name openstack

2. You should see output like the following when you launch an instance:

 � euca-run-instances output:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

27

 � nova boot output:

3. This will take a few brief moments to spin up. To check the status of your instances,
issue the following commands:

 � Listing instances using euca2ools:
euca-describe-instances

 � Listing instances using Nova Client:
nova list

nova show f10fd940-dcaa-4d60-8eda-8ac0c777f69c

4. This brings back output similar to the output of the previous command lines, yet
this time it has created the instance and it is now running and has IP addresses
assigned to it.

Note that you can use either command regardless of whether
you launched the instance using euca2ools or Nova Client tools
to view the status of instances running in our environment.

www.it-ebooks.info

http://www.it-ebooks.info/

Starting OpenStack Compute

28

5. You can now connect to this instance using SSH and specifying your private key to
gain access.

ssh -i openstack.pem ubuntu@172.16.1.1

The default user that ships with the Ubuntu cloud images
is ubuntu.

Congratulations! We have successfully launched and connected to our first OpenStack
cloud instance.

How it works...
After creating the default security settings, we made a note of our machine image identifier,
the ami- or ID value, and then called a tool from euca2ools or Nova Client to launch our
instance. Part of that command line refers to the keypair to use. We then connect to the
instance using the private key as part of that keypair generated.

How does the cloud instance know what key to use? As part of the boot scripts for this image,
it makes a call back to the meta-server which is a function of the nova-api service. The
meta-server provides a go-between that bridges our instance and the real world that the cloud
init boot process can call and, in this case, it downloaded a script to inject our private key into
the Ubuntu user's .ssh/authorized_keys file. We can modify what scripts are called during
this boot process, which is covered later on.

When a cloud instance is launched, it produces a number of useful details about that
instance—the same details that are output from the commands, euca-describe-instances, and
nova list. For euca2ools output there is a RESERVATION section and an INSTANCE section. In
the INSTANCE section, we get details of our running instance.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

29

Similar information is presented by the nova list and nova show commands. The nova
list command shows a convenient short version listing the ID, name, status, and IP
addresses of our instance. The nova show command provides more details similar to that
of euca-describe-instances.

The type of instance we chose, with the -t option for euca-run-instances, was
m1.small. This is an Amazon EC2 way of naming instance types. The same type was
specified as an ID of 2 when using the nova boot command. The instance types supported
can be listed by running the following command (there is no euca2ools equivalent):

nova flavor-list

These flavors (specs of instances) are summarized as follows:

Type of instance Memory VCPUS Storage Version
m1.tiny 512 MB 1 0 GB 32 and 64-bit
m1.small 2048 MB 1 20 GB 32 and 64-bit
m1.medium 4096 MB 2 40 GB 64-bit only
m1.large 8192 MB 4 80 GB 64-bit only
m1.xlarge 16384 MB 8 160 GB 64-bit only

Terminating your instance
Cloud environments are designed to be dynamic and this implies that cloud instances are
being spun up and terminated as required. Terminating a cloud instance is easy to do, but
equally it is important to understand some basic concepts of cloud instances.

Cloud instances such as the instance we have used are not persistent. This means that
the data and work you do on that instance only exists for the time that it is running. A cloud
instance can be rebooted, but once it has been terminated, all data is lost.

To ensure no loss of data, an OpenStack Compute service named
nova-volume provides persistent data store functionality that
allows you to attach a volume to it that doesn't get destroyed on
termination but allows you to attach it to running instances.
A volume is like a USB drive attached to your instance.

www.it-ebooks.info

http://www.it-ebooks.info/

Starting OpenStack Compute

30

How to do it...
From our Ubuntu machine, first list the running instances to identify the instance you want
to terminate.

We can terminate instances using either euca-terminate-instances or using nova
delete regardless of whether we launched our instance using euca2ools or Nova
Client tools.

 f Terminating instances using euca2ools:
euca-describe-instances

 � To terminate an instance:
euca-terminate-instances i-00000001

 � You can re-run euca-describe-instances again to ensure your instance
has terminated.

 f Terminating instances using Nova Client:
nova list

 � To terminate an instance:
nova delete myInstance

 � You can re-run nova list again to ensure your instance has terminated.

You can terminate any number of instances with a
single command by listing the instance Ids one after the
other. For example, euca-terminate-instances
i-00000001 i-00000002 i-00000005.

How it works...
We simply identify the instance we wish to terminate by its ID, which is in the format
i-00000000 when viewing instances using euca-describe-instances or by name (or ID)
when using nova delete. Once identified, we can specify this as the instance to terminate.
Once terminated, that instance no longer exists—it has been destroyed. So if you had any data
on there it will have been deleted along with the instance.

www.it-ebooks.info

http://www.it-ebooks.info/

2
Administering

OpenStack Compute
In this chapter, we will cover:

 f Creating and modifying user accounts

 f Managing security groups

 f Creating and managing keypairs

 f Using public cloud images

 f Alternative upload method using euca2ools

 f Creating custom Windows images

 f Creating custom CentOS images

Introduction
Administration of OpenStack Compute should be seen as no different from managing a
single Linux host. It requires appropriate users, tenants, and security configured, so that any
user in a particular tenant doesn't have access to another tenant's environment. Of course,
there's added complexity as we're dealing with a very dynamic environment, but the basics
should remain.

Dealing with virtualization in a cloud world means we have to create appropriate images
that can be used by OpenStack Compute. These should allow the user to run post-boot
setup scripts to maintain a high level of flexibility to the end user. After all, our private cloud
environment shouldn't limit the functionality required by the end user.

In this chapter, we will be running administrative commands on both our openstack1 host
and our Ubuntu client, to manage our OpenStack Compute environment.

www.it-ebooks.info

http://www.it-ebooks.info/

Administering OpenStack Compute

32

Creating and modifying user accounts
In our sandbox environment, we're running a very basic method of authentication, configured
with the --use_deprecated_auth flag in our /etc/nova/nova.conf file. This method
of authentication is appropriate for testing functionality. To add, remove, and modify accounts
using this method of authentication, we use the nova-manage command directly on our
OpenStack Compute host.

Getting ready
To begin with, ensure you're logged in to your OpenStack Compute host.

How to do it...
To add, remove, or modify user accounts, see the following sections.

Adding Users
In our environment, we currently have one user configured, openstack. This user had local
administration rights to the project that allowed us to configure security groups and upload
images as well as site-wide administration rights, courtesy of the cloudadmin role assigned.

Normal users are given roles that exist only within their project (tenant). To do this, we perform
the following steps:

1. To create a normal account under our cookbook project, we issue the
following command:
sudo nova-manage user create demoUser

2. This user isn't assigned to any project yet, though; to do this we issue the
following command:
sudo nova-manage project add --project=cookbook
 --user=demoUser

3. Finally, we can create the project zipfile bundle that we can then use on our client
to utilize the environment, as that user. To do this, we issue the following command:
sudo nova-manage project zipfile cookbook demoUser
 demoUser.zip

A user can belong to any number of projects. Ensure the credential
ZIP files are named separately for each project to allow you to swap
between each.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

33

4. This creates the demoUser.zip file. We can download this to our client and
unpack and source in the novarc file within this, ready for use with our OpenStack
Compute environment.

Deleting Users
The method for removing users in our environment, when basic authentication is used, is
similar to that of creating a user.

To remove a user from our environment when basic authentication is used, we simply issue
the following command:

sudo nova-manage user delete demoUser

Removing a user from a project
A user can belong to any number of projects, so adding and removing users from projects is
an essential feature of a cloud environment.

To remove a user from a project we issue the following command:

sudo nova-manage project remove --project=cookbook --user=demoUser

How it works...
To manage users in OpenStack Compute when using basic authentication, as denoted by the
--use_deprecated_auth flag in /etc/nova/nova.conf, we use the nova-manage
command on our OpenStack Compute server directly, and we must run this with root
privileges using sudo. We can add a user to a particular role in a particular project. This
can be done in three steps:

1. Create the user, as follows:
sudo nova-manage user create username

2. Add the user to the project, as follows:
sudo nova-manage project add –-project=projectname
 -–user=username

3. Finally, export the credentials to a ZIP file, which can then be transferred to the user's
client, as follows:

sudo nova-manage project zipfile projectname username
 username.zip

What this means is that we can now give our users their own appropriate OpenStack
credentials, unpack them, and then source in their own details, which allows them to run the
commands as their role dictates.

www.it-ebooks.info

http://www.it-ebooks.info/

Administering OpenStack Compute

34

To modify accounts, we issue the following commands:

 f To delete a user we issue:
sudo nova-manage user delete --name=username

 f To remove a user we issue:

sudo nova-manage project remove --project=projectname
--name=username

See also
 f The Adding users recipe in Chapter 3, Keystone OpenStack Identity Service

 f The User management by using OpenStack Dashboard recipe in Chapter 9,
Horizon OpenStack Dashboard

Managing security groups
Security groups are firewalls for your instances, and they're mandatory in our cloud
environment. The firewall actually exists on the nova-compute host that is running the
instance and not in the instance itself. They allow us to protect our hosts by restricting and
allowing access and also protect our instances from other users' instances running on the
same hosts.

Getting ready
To begin with, ensure you're logged in to your Ubuntu client that has access to the euca2ools
or Nova Client tools. These packages can be installed using the following commands:

sudo apt-get update

sudo apt-get install euca2ools python-novaclient

How to do it...
The following sections describe how to create and modify security groups in our
OpenStack environment.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

35

Creation of security groups
Recall that we have already created a default security group that opened up TCP port 22 from
anywhere and allowed us to ping our instances. We have also added in a new group to allow
us to access our Windows environment. To open up another port, we simply run our command
again, assigning that port to a particular group.

For example, to open up TCP port 80 and port 443 on our instances using euca2ools, we can
do the following:

euca-add-group webserver -d "Web Server Access"

euca-authorize webserver -P tcp -p 80 -s 0.0.0.0/0

euca-authorize webserver -P tcp -p 443 -s 0.0.0.0/0

And to open up TCP port 80 and port 443 on our instances using Nova Client we can do
the following:

nova secgroup-create webserver "Web Server Access"

nova secgroup-add-rule webserver tcp 80 80 0.0.0.0/0

nova secgroup-add-rule webserver tcp 443 443 0.0.0.0/0

Note that we specified a different group, this time named webserver. The reason for this
is that we might not want to open up our web server to everyone, by default, which would
happen every time we spin up a new instance. Putting it into its own security group allows
us to open up access to our instance to port 80 by simply specifying this security group when
we launch an instance.

For example, when using euca2ools, we use the -g option.

euca-run-instances ami-00000002 -k openstack -t m1.tiny -g default
 -g webserver

Under Nova Client, we specify the --security_groups option

nova boot myInstance --image 0e2f43a8-e614-48ff-92bd-be0c68da19f4
 --flavor 2 --key_name openstack --security_groups
 default,webserver

To remove a rule from a security group
To remove a rule from a security group, we run the euca-revoke or nova secgroup-
delete commands. For example, suppose we want to remove the HTTPS rule from our
webserver group. To do this using euca2ools, we do the following:

euca-revoke webserver -P tcp -p 443 -s 0.0.0.0/0

Under Nova Client this would be:

nova secgroup-delete-rule webserver tcp 443 443 0.0.0.0/0

www.it-ebooks.info

http://www.it-ebooks.info/

Administering OpenStack Compute

36

To delete a security group
To delete a security group, say webserver, we run the following under euca2ools:

euca-delete-group webserver

Under Nova Client this would be:

nova secgroup-delete webserver

How it works...
Creation of a security group is done in two steps as follows:

1. The first is that we add a group using the euca-add-group or nova
secgroup-create commands.

2. Following that we can define rules in that group using the euca-authorize or nova
secgroup-add-rule tools, and with this we can specify destination ports that we
can open up on our instances and the networks that can see these open ports.

Defining groups and rules using euca2ools
The euca-add-group command has the following syntax:

euca-add-group group_name -d description

The euca-authorize command has the basic following syntax:

euca-authorize -P protocol -p port -s source

To view more advanced syntax, run euca-authorize -h.

Removing rules from a security group is done using the euca-revoke-access command,
which is analogous to the euca-authorize command. Removing a security group
altogether is done using the euca-delete-group command, which is analogous to the
euca-add-group command.

Defining groups and rules using Nova Client
The nova secgroup-create command has the following syntax:

nova secgroup-create group_name "description"

The nova secgroup-add-rule command has the following basic syntax:

nova secgroup-add-rule group_name protocol port_from port_to source

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

37

Removing rules from a security group is done using the nova secgroup-delete-rule
command and is analogous to the nova secgroup-add-rule command. Removing a
security group altogether is done using the nova secgroup-delete command and is
analogous to the nova secgroup-create command.

Creating and managing keypairs
Keypairs refers to SSH keypairs and consists of two elements—a public key and a private
key. Only this specific combination of the public and private key will allow us access to
our instances.

Getting ready
To begin with, ensure you're logged in to your Ubuntu client that has access to the euca2ools
and Nova Client tools. These packages can be installed using the following commands:

sudo apt-get update

sudo apt-get install euca2ools python-novaclient

How to do it...
To create a keypair, we run the euca-add-keypair command when we're using euca2ools,
or nova keypair-add when using Nova Client. We name the key accordingly, which we
will subsequently refer to when launching instances. The output of the command is the SSH
private key that we will use to access a shell on our instance.

1. First create the keypair as follows, when using euca2ools:
euca-add-keypair myKey > myKey.pem

Or for Nova Client, this looks like:

nova keypair-add myKey > myKey.pem

2. We must then protect the private key output:

chmod 0600 myKey.pem

This command has generated a keypair and stored the public portion within our database, at
the heart of our OpenStack environment. The private portion has been written to a file on our
client, which we then protect by making sure that only our user can access this file.

www.it-ebooks.info

http://www.it-ebooks.info/

Administering OpenStack Compute

38

When we want to launch an instance using our newly created keypair under euca2ools, we
specify this with the -k option on the euca-run-instances command line, as follows:

euca-run-instances ami-00000002 -k myKey -t m1.tiny

When we want to use this new key under Nova Client, this looks as follows, using the nova
boot command:

nova boot myInstance --image 0e2f43a8-e614-48ff-92bd-be0c68da19f4
 --flavor 2 --key_name myKey

And when we want to SSH to this running instance, we specify the private key on the SSH
command line with the -i option:

ssh ubuntu@172.16.1.1 -i myKey.pem

As with most things Unix, the values and files specified are
case-sensitive.

Listing and deleting keypairs using euca2ools
To list and delete keypairs using euca2ools, carry out the set of commands in the
following sections:

List the keypairs
To list the keypairs in our project, we simply run the euca-describe-keypairs command,
as follows:

euca-describe-keypairs

This brings back a list of keypairs in our project, such as the following:

KEYPAIR openstack bb:af:26:09:8a:c4:72:98:d9:1e:cd
:e5:51:60:50:63
KEYPAIR myKey 3c:74:65:72:66:19:bd:a5:90:21:45:06:0e:4f:64:29

Delete the keypairs
To delete a keypair from our project, we simply specify the name of the key as an option to the
euca-delete-keypair tool.

 f To delete the myKey keypair, we do the following:
euca-delete-keypair myKey

 f We can verify this by listing the keys available, thus:

euca-describe-keypairs

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

39

Listing and deleting keypairs using Nova Client
To list and delete keypairs using Nova Client, carry out the set of commands in the
following sections.

List the keypairs
To list the keypairs in our project using Nova Client, we simply run the nova keypair-list
command, as follows:

nova keypair-list

This brings back a list of keypairs in our project, such as the following:

Delete the keypairs
To delete a keypair from our project, we simply specify the name of the key as an option to the
nova keypair-delete tool.

 f To delete the myKey keypair, we do the following:
nova keypair-delete myKey

 f We can verify this by listing the keys available, thus:

nova keypair-list

Deleting keypairs is an irreversible action. Deleting a keypair to a
running instance will prevent you from accessing that instance.

How it works...
Creation of a keypair allows us SSH access to our instance and is carried out using the
euca-add-keypair or nova keypair-add commands. This stores the public key in our
backend database store that will be injected into the .ssh/authorized_keys file on our
cloud instance, as part of the cloud instance's boot/cloud init script. We can then use the
private key that gets generated to access the system by specifying this on the ssh command
line with the -i option.

We can of course also remove keys from our project, and we do this to prevent further access by
that particular keypair. The commands euca-delete-keypair and nova keypair-delete
do this for us, and we can verify what keys are available to us in our project, by running the
euca-describe-keypairs or nova keypair-list commands.

www.it-ebooks.info

http://www.it-ebooks.info/

Administering OpenStack Compute

40

Using public cloud images
Images are the templates that get copied and spawned in our OpenStack Compute
environment. There are a small handful of places where we can get ready-made images for
our use. With these images, we are able to get off the ground very quickly, knowing that the
community has tested the images.

For Ubuntu, download any of the releases at http://
cloud-images.ubuntu.com/releases/.

For CentOS and Fedora images, download them
at http://open.eucalyptus.com/wiki/
EucalyptusUserImageCreatorGuide_v2.0.

We have already used a public Ubuntu image in Chapter 1, Starting OpenStack Compute,
where we used the tool cloud-publish-tarball to upload this image to our cloud
environment. We will recap that and look at an alternative method for images that aren't
in the same format.

Getting ready
To begin with, ensure you're logged into your Ubuntu client and have your cloud credentials
sourced into your environment.

The cloud-publish-tarball tool is provided by the cloud-utils package. This can be
installed as follows:

sudo apt-get update

sudo apt-get -y install cloud-utils

How to do it...
There are a few locations from where images can be downloaded for use in our OpenStack
environment. These images are usually packaged as tarballs, which allows us to use a
convenient tool called cloud-publish-tarball, from the cloud-utils package, to
upload them into our environment.

Ubuntu Cloud Images from ubuntu.com
1. First, we'll download a new Ubuntu image from http://cloud-images.ubuntu.

com/releases/, as follows:
wget http://cloud-images.ubuntu.com/precise/current/
 precise-server-cloudimg-i386.tar.gz

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

41

2. We can now simply upload this to our environment, using the
cloud-publish-tarball command, as follows:
cloud-publish-tarball precise-server-cloudimg-i386.tar.gz images
i386

3. Once complete, this is available as an image for use in our OpenStack
Compute environment.

 � To display images using euca2ools, use the following command:
euca-describe-images

 � To display images using Nova Client, use the following command:

nova image-list

CentOS/Fedora Images from eucalyptus.com
1. To get a CentOS image from eucalyptus.com, we download the tarball, as follows:

wget "http://open.eucalyptus.com/sites/all/
 modules/pubdlcnt/pubdlcnt.php?
 file=http://www.eucalyptussoftware.com/downloads/
 eucalyptus-images/euca-centos-5.3-i386.tar.gz&nid=4305"
 -O euca-centos-5.3-i386.tar.gz

2. We can now simply upload this to our environment using the same
cloud-publish-tarball command, as follows:
cloud-publish-tarball euca-centos-5.3-i386.tar.gz images i386

3. Once complete, this is available as an image for use in our OpenStack
Compute environment.

 � To display images using euca2ools, use the following command:
euca-describe-images

 � To display images using Nova Client, use the following command:

nova image-list

How it works...
Cloud images that are publicly available and packaged as tarballs can conveniently be
uploaded to our OpenStack Compute environment, with the cloud-publish-tarball
command, using the following syntax:

cloud-publish-tarball tarball.tar.gz bucket architecture

architecture is optional but recommended, as cloud-publish-tarball does its best
to work out the architecture from the filename given.

www.it-ebooks.info

http://www.it-ebooks.info/

Administering OpenStack Compute

42

Alternative upload method using euca2ools
Using an alternative method to upload images to our environment offers us greater flexibility
in what we can configure. By using the euca-bundle-image, euca-upload-bundle,
and euca-register tools, we can upload each part of our machine image independently,
allowing us to specify alternative kernel and ramdisk images.

Getting ready
To begin with, ensure you're logged in to your Ubuntu client and have your cloud credentials
sourced into your environment.

The euca-bundle-image, euca-upload-bundle, and euca-register tools are
provided by the euca2ools package. This can be installed as follows:

sudo apt-get update

sudo apt-get -y install euca2ools

How to do it...
To have the ability to have more control over how we upload images into our environment, we
can use the tools provided by euca2ools. Carry out the following steps to use euca2ools to
upload images into your OpenStack environment:

1. Download a cloud image, as described at the beginning of the last section. Once
downloaded, we then unpack this as follows:
tar zxvf euca-centos-5.3-i386.tar.gz
cd euca-centos-5.3-i386

2. Once unpacked, we use a separate set of commands to bundle this up for our
OpenStack Compute environment and upload the relevant parts to create our image
for use. For this section, we run a command named euca-bundle-image, to
package up the kernel. There will have been two distinct kernel folders in the tarball:
kvm-kernel and xen-kernel. Our sandbox server is based on kvm, so we will
bundle up the kvm-kernel file. The command is as follows:
euca-bundle-image -i kvm-kernel/vmlinuz-2.6.28-11-generic
 --kernel true

The previous command will produce the following output:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

43

3. Note the manifest XML created as we reference this with euca-upload-bundle to
upload this to our environment. The command is as follows:
euca-upload-bundle -b images -m /tmp/vmlinuz-2.6.28-11
 -server.manifest.xml

The previous command will produce the following output:

4. We now proceed to register this using the euca-register command (so it is
available for use by OpenStack Compute), using the uploaded image manifest XML
reference. The command is as follows:
euca-register images/vmlinuz-2.6.28-11-server.manifest.xml

The previous command will produce the following output:

5. Now that we have the kernel uploaded and registered, we can do the same to the
ramdisk that accompanies this CentOS image. This is done using the same set of
commands, but referencing the ramdisk instead. We do this as follows:
euca-bundle-image -i kvm-kernel/initrd.img-2.6.28-11-server
--ramdisk true

The previous command will produce the following output:

The command to upload is as follows:
euca-upload-bundle -b images -m /tmp/initrd.img-2.6.28-11
 -server.manifest.xml

The previous command will produce the following output:

www.it-ebooks.info

http://www.it-ebooks.info/

Administering OpenStack Compute

44

The command to register is as follows:
euca-register images/initrd.img-2.6.28-11-
 server.manifest.xml

The previous command will produce the following output:

6. We can now bundle all this together along with our machine image in a similar
way, so we can reference this for launching instances. The first bundle line only
differs slightly in that we reference the uploaded ramdisk and kernel as part of
this machine image:
euca-bundle-image -i centos.5-3.x86.img --kernel aki-
 00000003 --ramdisk ari-00000004

7. This takes a little longer (depending on the size of the image), as it splits it into
smaller chunks—10 MB in size—and produces output like the following:

8. We then continue to upload and register this as before; the only difference is the
amount of data to upload. The command is as follows:
euca-upload-bundle -b images -m /tmp/centos.5-3.x86.img.manifest.
xml

The previous command will produce the following output:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

45

The command to register is as follows:
euca-register images/centos.5-3.x86.img.manifest.xml

The previous command will produce the following output:

9. That's it—we now have a CentOS 5.3 image for use in our Nova environment. To verify
this, we can list the available images as follows:
euca-describe-images

10. We can run our newly uploaded image by referencing this output image ami and
connect to it via ssh as the root user for this CentOS image, as follows:

euca-run-instances ami-00000005 -k openstack -t m1.tiny

ssh -i openstack.pem root@172.16.1.1

How it works...
Uploading images using the tools provided by euca2ools is quite straightforward and is made
up of three steps: bundle, upload, and register. You then repeat these steps for each of the
kernel, ramdisk, and image files.

euca-bundle-image -i kernel --kernel true

euca-upload-bundle -b bucket -m manifest.xml
euca-register bucket/manifest.xml

euca-bundle-image -i ramdisk --ramdisk true

euca-upload-bundle -b bucket -m manifest.xml

euca-register bucket/manifest.xml

euca-bundle-image -i image --kernel kernel_id –ramdisk ramdisk_id

euca-upload-bundle -b bucket -m manifest.xml

euca-register bucket/manifest.xml

Each command flows to the next: euca-bundle-image outputs the manifest XML file path
that is used by euca-upload-bundle as the value for the parameter -m. euca-upload-
bundle outputs the value to be used by euca-register. The last triplet of bundle, upload,
and register is for the image itself, as you need to reference the assigned kernel and ramdisk
IDs from the preceding steps.

These procedures can also be used to upload to other Cloud
environments such as Amazon EC2.

www.it-ebooks.info

http://www.it-ebooks.info/

Administering OpenStack Compute

46

Creating custom Windows images
If you want to run Windows in your OpenStack environment, you must create the images
yourself. This ensures you're not breaching Microsoft's EULA—as you must first agree to this
as part of an installation routine—as well as ensuring that your Windows image is suitable for
your environment. To do this under OpenStack Compute, we create our image by booting the
Windows ISO.

Getting ready
To begin with, ensure you're logged into your Ubuntu client and have your cloud credentials
sourced into your environment. We need to install the qemu-kvm package to allow us to
create the required images and ensure we have euca2ools and cloud-utils available to allow
us to upload the resultant Windows image. This is achieved with the following command:

sudo apt-get update

sudo apt-get -y install qemu-kvm

You also need an ISO of the Windows server you are going to create. For this section, we will
be using Windows 2003 SP2 i386.

If you are using Ubuntu as your client through VirtualBox and you don't have enough disk
space, simply add in a new disk of at least 20 GB. We will need at least 20 GB to create
our new OS cloud installs and temporary files, so that we can upload this to our Nova
environment. You also need to use an alternative to kvm, named qemu.

Your client also needs a VNC client. If you don't have one installed, you can freely download
the following:

 f For Ubuntu, install apt-get install gtkvncviewer

 f For Mac OSX, visit http://sourceforge.net/projects/chicken/

 f For Windows, visit http://www.tightvnc.com/download.php

How to do it...
Installation of a Windows image can be achieved by invoking kvm commands directly, as
described in the following steps:

1. We first need to create the raw image that will essentially be the hard drive for
our Windows installation, so it needs to be big enough to install the Windows
operating system:
kvm-img create -f raw win2k3-i386.img 10G

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

47

2. OpenStack Compute uses VIRTIO to present its disk to the OS, but Windows doesn't
ship with these required drivers. We must download these so we can load them
during the installation. Browse to http://alt.fedoraproject.org/pub/alt/
virtio-win/latest/images/bin/. We can download the ISO that is listed,
as follows:

3. wget http://alt.fedoraproject.org/pub/alt/virtio-
 win/latest/images/bin/virtio-win-0.1-22.iso

wget http://www.linuxservices.co.uk/virtio-win-1.1.16.vfd

4. We can now launch kvm, specifying our Windows 2003 ISO, specifying the disk image
we've created, and putting the equivalent of the drivers loaded onto a floppy disk, so
Windows can find the required drivers:
sudo kvm -m 768 -cdrom
 en_win_srv_2003_r2_standard_with_sp2_cd1.iso -drive
 file=win2k3-i386.img,if=virtio -fda virtio-win-
 1.1.16.vfd -boot d -nographic -vnc :0

If using a guest running under VirtualBox or VMware (or if your
client simply doesn't support hardware virtualization) and you
encounter a problem running kvm, add a -no-kvm parameter
to the previous command.

You can check for hardware virtualization support by running
the command kvm-ok under Ubuntu.

5. You can now connect to this using a VNC client. If you're running Ubuntu locally,
connect to localhost, or else connect to the Ubuntu guest 172.16.0.253.

6. Go through the installation of Windows. When it completes with the Rebooting
computer message, press CTRL + A and then X, to stop kvm.

7. You can now boot your Windows image using KVM to complete the installation (note
the -boot c parameter to boot from the hard drive).
sudo kvm -m 768 -cdrom
 en_win_srv_2003_r2_standard_with_sp2_cd1.iso -drive
 file=win2k3-i386.img,if=virtio -fda virtio-win-
 1.1.16.vfd -boot c -nographic -vnc :0 -no-kvm

8. This has finished the installation, but we must now configure our Windows image,
so that it is suitable for our Nova environment. To do this, we must boot into it again,
connect via VNC, configure Remote Desktop Access, and accept the installation of
the drivers and any other first-time install steps:
sudo kvm -m 768 -drive file=win2k3-i386.img,if=virtio -fda
 virtio-win-1.1.16.vfd -boot c -nographic -vnc :0 -no-
 kvm

www.it-ebooks.info

http://www.it-ebooks.info/

Administering OpenStack Compute

48

9. Once completed, power this off by hitting CTRL + A and then X, to exit kvm. We can
then bundle this image up for use in OpenStack Compute.
euca-bundle-image -i win2k3-i386.img

euca-upload-bundle -b images -m /tmp/win2k3-
 i386.img.manifest.xml

euca-register images/win2k3-i386.img.manifest.xml

10. Once the image has uploaded (it can take a short while), it will be visible in your
image list. To connect to this, we need to open up access to the RDP port (TCP 3389).
So, we create an additional security group for this purpose, as follows:
euca-describe-images

euca-add-group windows -d "Windows Group"

euca-authorize windows -P tcp -p 3389 -s 0.0.0.0/0

11. We can then launch this instance, for example, under euca2ools do the following:
euca-run ami-00000006 -g default -g windows -k openstack -t
 m1.small

12. Finally, we can connect to this instance once it has launched using RDP.

Under Mac OSX, you can download an RDP client at http://
www.microsoft.com/mac/downloads, and for Linux you can
download rdesktop using your distribution's package manager.

Having trouble accessing your Windows instance? Connect to your
openstack1 host using VNC. The first instance runs on VNC port
5900 (equivalent to :0), the second on 5901 (equivalent to :1).

How it works...
Creating a suitable image running Windows in our Nova environment is simply done by
running the installation routine through a kvm session with VNC enabled and then uploading
the created disk image to our Nova environment. Creating a guest image in this way is done
using the following steps:

1. Create the hard disk image using kvm-img.

2. Create a new kvm session, booting the ISO and specifying the hard drive image as our
destination hard drive.

3. Configure it for our use (for example, enabling RDP access).

4. Bundle up the created disk image.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

49

Creating custom CentOS images
For most uses, downloading pre-made Ubuntu or CentOS images will be good enough, as they
provide an OS with minimal packages installed and are able to invoke extra commands once
booted. Sometimes though, the images need extra work; perhaps they need extra disk space
as part of their instance storage, or maybe they need to work with a third party where they
expect certain tools or scripts to be present. Creating custom OS images for your cloud allows
you to install instances just the way you need to.

Creating custom Linux images is more complex, as we have greater flexibility on how to use
these images in our OpenStack Compute environment.

For this next section, we will look at creating the popular CentOS distribution as an OpenStack
Compute image. This section is applicable for most Red Hat-based clones in principle.

Getting ready
To begin with, ensure you're logged into your Ubuntu client and have your cloud credentials
sourced into your environment. We need to install the qemu-kvm package to allow us to
create the required images as well as ensure that we have the cloud-utils package
available, to allow us to upload the image to our OpenStack environment once complete.

sudo apt-get update

sudo apt-get -y install qemu-kvm cloud-utils

If you are using Ubuntu as your client, through VirtualBox, and you don't have enough disk
space, simply add in a new disk of at least 20 GB. We will need at least 20 GB to create
our new OS cloud installs and temporary files, so that we can upload this to our OpenStack
Compute environment. You also need to use an alternative to kvm, named qemu.

Your client also needs a VNC client. If you don't have one installed, you can freely download
the following:

 f For Ubuntu, install apt-get -y install gtkvncviewer

 f For Mac OSX, visit http://sourceforge.net/projects/chicken/

 f for Windows, visit http://www.tightvnc.com/download.php

www.it-ebooks.info

http://www.it-ebooks.info/

Administering OpenStack Compute

50

How to do it...
Creation of a CentOS image is very similar to that of a Windows image, but since Linux allows
for the flexibility of being able to boot alternative kernels and ramdisks, our creation process
has to cater to this. For this section, we will describe how to create an appropriate CentOS
6.1 image for use in our OpenStack Compute environment, by calling kvm (or qemu, where
hardware virtualization isn't available) directly.

1. We first need to download CentOS 6.1 from centos.org. We do this as follows:
wget http://mirrors.manchester.icecolo.com/centos/
 6.2/isos/i386/CentOS-6.2-i386-minimal.iso

2. Once downloaded, we can proceed with creating our raw disk image, which will form
the basis of the image we'll use to boot our instances:
kvm-img create -f raw CentOS-6.2-i386-filesystem.img 5G

3. Now that this has been created, we can use it as the hard drive that we will use when
we boot the ISO under kvm. To have control over partitioning, we must do a graphical
installation of CentOS 6.2, and for this we must set at least 1024 MB of RAM. If we
install CentOS 6.2 using the text-based installer, we won't be able to produce a valid
partition that we can use for our OpenStack Compute instances. To launch the ISO so
that we can access it using VNC, execute the following:
sudo kvm -m 1024 -cdrom CentOS-6.2-i386-minimal.iso -drive
 file=CentOS-6.2-i386-filesystem.img,if=scsi,index=0
 -boot d -net nic -net user -vnc :0 -usbdevice tablet

Add -no-kvm, if running the kvm command under your VirtualBox, to
enable qemu—software virtualization.

If you encounter a failure regarding an MP-BIOS bug launching kvm,
stop the instance and start it again.

4. Once running, connect to this instance using your VNC viewer, and complete
your installation of CentOS ensuring that you choose Create Custom Layout
when prompted.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

51

5. Create a single partition for the / (root) partition and ensure you use all
available space.

6. When asked to continue, you will be presented with a warning regarding not
specifying a swap partition. It is safe to continue by answering Yes.

7. After a while, your installation will complete. When it says rebooting system, press
CTRL + C in the terminal running kvm to power this machine off. We can now
relaunch directly into our new image to configure this:
sudo kvm -m 1024 -drive file=CentOS-6.2-i386-
 filesystem.img,if=scsi,index=0,boot=on -boot c -net nic
 -net user -nographic -vnc :0 -no-acpi

8. When it has booted, log in as root with the password you set during your
installation. We first need to get the network interface up and running, followed
by a system update.
dhclient eth0

yum -y update

9. After the update, remove the network persistence udev rules, to ensure that our only
required interface remains as eth0, and then power the instance off as follows:
rm -rf /etc/udev/rules.d/70-persistent-net.rules

cat > /etc/sysconfig/network-scripts/ifcfg-eth0 << EOF

DEVICE=eth0

BOOTPROTO=dhcp

ONBOOT=yes

EOF

poweroff

10. Launch the instance again by repeating the command in step 5 and log in as root
again. This reboot is to ensure our image is fully functional after our system update.
We're now ready to customize our instance, depending on our requirements. For the
purpose of this section, we'll just ensure SSH is running.
chkconfig sshd on

poweroff

www.it-ebooks.info

http://www.it-ebooks.info/

Administering OpenStack Compute

52

11. We can now extract the EXT4 partition that is the basis of our machine image. We do
this by interrogating the image we created and extracting the data partition.
sudo losetup -f CentOS-6.2-i386-filesystem.img

sudo losetup -a

sudo fdisk -l /dev/loop0

12. This will produce output as shown in the following screenshot:

13. The key value to note here is the Start sector, which is specified as 2048. We take
this value and multiply it by 512 bytes to give us 1048576. We use this byte value to
extract the data for our image.

14. Unmount the loop device and then remount it, using this byte value calculated
as the offset.
sudo losetup -d /dev/loop0

sudo losetup -f -o 1048576 CentOS-6.2-i386-filesystem.img

sudo losetup -a

15. We can then extract the mounted file system, which becomes our machine image.
sudo dd if=/dev/loop0 of=CentOS-6.2-i386.img

16. We then unmount our offset image, now that we have extracted the data to our
image file.
sudo losetup -d /dev/loop0

17. We're now ready to configure our image for our cloud environment, so we mount this
extracted image, so that we can edit the files within it.
sudo mount -o loop CentOS-6.2-i386.img /mnt

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

53

18. We need to edit the /etc/fstab file in our image, so that the root file system label
remains constant when we spawn different instances:
LABEL=uec-rootfs / ext4 defaults 0 1

19. To ensure we can log in using the keys we specify to run our instances, we add the
following to the rc.local script:
Download the key from the meta server
mkdir –-mode=0700 -p /root/.ssh
echo >> /root/.ssh/authorized_keys
curl -m 10 -s http://169.254.169.254/latest/meta-data/public-
keys/0/openssh-key | grep 'ssh-rsa' >> /root/.ssh/authorized_keys
chmod 0600 /root/.ssh/authorized_keys
echo "AUTHORIZED_KEYS:"
echo "************************"
cat /root/.ssh/authorized_keys
echo "************************"

20. Once done, we need to copy the kernel and ramdisk for use within Nova.
sudo cp /mnt/boot/vmlinuz-2.6.32-220.7.1.el6.i686
 CentOS-6.2-i386-vmlinuz

sudo cp /mnt/boot/initramfs-2.6.32-220.7.1.el6.i686.img
 CentOS-6.2-i386-loader

21. We can now unmount our image, ready for upload to our OpenStack Compute
environment, thus.
sudo umount /mnt

22. We now change the label of our image to match what we specified in our fstab file.
sudo tune2fs -L uec-rootfs CentOS-6.2-i386.img

23. We can finally upload this to our OpenStack Compute environment for use, thus.
cloud-publish-image -t image -K CentOS-6.2-i386-vmlinuz -R
 CentOS-6.1-i386-loader i386 CentOS-6.1-i386.img images

24. After a short while, we can view this in the list of images we can use under
OpenStack Compute.

euca-describe-images

www.it-ebooks.info

http://www.it-ebooks.info/

Administering OpenStack Compute

54

How it works...
Creating custom Linux images is more complex due to the greater flexibility we have to cater to
in our OpenStack Compute environment. The steps are outlined as follows:

1. Create the disk image using kvm-img.

2. Boot the ISO through kvm, specifying the disk image as the destination hard drive.

3. Ensure you only create a single EXT3 or EXT4 partition (/).

4. Extract the data from the disk image (excluding boot sector) by mounting the image
and viewing the image drive geometry to find where the data partition begins.

5. Modify any startup scripts and disk configuration to make it flexible in our cloud
environment.

6. Extract the kernel and ramdisk from our installation, so we can upload this separately
to OpenStack Compute.

7. Upload the disk image, ramdisk, and kernel for use by clients using the cloud-
publish-image tool.

8. Separating out the kernel, ramdisk, and image allows us to keep the base OS
installation separate from kernels and ramdisks. This means we can update our
running kernels without affecting the underlying OS installation, just as we would in a
traditional Linux installation.

www.it-ebooks.info

http://www.it-ebooks.info/

3
Keystone OpenStack

Identity Service
In this chapter, we will cover:

 f Installing OpenStack Identity Service

 f Configuring roles

 f Creating tenants

 f Adding users

 f Defining service endpoints

 f Configuring the service tenant and service users

 f Configuring OpenStack Image Service to use OpenStack Identity Service

 f Configuring OpenStack Compute to use OpenStack Identity Service

 f Using OpenStack Compute with OpenStack Identity Service

Introduction
OpenStack Identity Service, known as Keystone, provides services for authenticating and
managing user, account, and role information for our OpenStack cloud environment. It
is a crucial service that underpins the authentication and verification between all of our
OpenStack cloud services. Authentication with OpenStack Identity Service sends back
an authorization token that is passed between the services, once validated. This token is
subsequently used as your authentication and verification that you can proceed to use that
service, such as OpenStack Storage and Compute.

www.it-ebooks.info

http://www.it-ebooks.info/

Keystone OpenStack Identity Service

56

Installing OpenStack Identity Service
Installation and configuration of OpenStack Identity Service is straightforward from Ubuntu
packages. Once configured, connecting to our OpenStack cloud environment will be
performed through our new OpenStack Identity Service.

The backend datastore for our OpenStack Identity Service is a simple SQLite database.

Getting ready
To begin with, ensure you're logged in to our OpenStack Compute host or an appropriate
server on the network where OpenStack Identity Service will be installed, that the rest of the
OpenStack hosts have access to.

How to do it...
Carry out the following instructions to install OpenStack Identity Service:

1. Installation of OpenStack Identity Service is done by specifying the keystone package
in Ubuntu, and we do this as follows:
sudo apt-get update

sudo apt-get -y install keystone

2. Once installed, we need to configure the backend database store, so we first
create the keystone database in MySQL. We do this as follows (where we have
a user in MySQL called root, with the password openstack, that is able to
create databases):
MYSQL_PASS=openstack

mysql -uroot -p$MYSQL_PASS -e 'CREATE DATABASE keystone;'

3. It is good practice to create a user that is specific to our OpenStack Identity Service,
so we create this as follows:
mysql -uroot -p$MYSQL_PASS -e "GRANT ALL PRIVILEGES ON
 keystone.* TO 'keystone'@'%'"

mysql -uroot -p$MYSQL_PASS -e "SET PASSWORD FOR
 'keystone'@'%' = PASSWORD('$MYSQL_PASS');"

4. We then need to configure OpenStack Identity Service to use this database by editing
the /etc/keystone/keystone.conf file, and then change the sql_connection
line to match the database credentials. We do this as follows:
sudo sed -i "s#^connection.*#connection =

mysql://keystone:$MYSQL_PASS@172.16.0.1/keystone#"

/etc/keystone/keystone.conf

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

57

5. We can now restart the keystone service:
sudo stop keystone
sudo start keystone

6. With Keystone started, we can now populate the keystone database with the
required tables, by issuing the following command:

sudo keystone-manage db_sync

Congratulations! We now have OpenStack Identity Service installed
for use in our OpenStack environment.

How it works...
A convenient way to install OpenStack Identity Service ready for use in our OpenStack
environment is by using the Ubuntu packages. Once installed, we configure our MySQL
database server with a keystone database and set up the keystone.conf configuration
file to use this. After starting the Keystone service, running the keystone-manage db_sync
command populates the keystone database with the appropriate tables ready for us to add
in the required users, roles, and tenants required in our OpenStack environment.

Configuring roles
Roles are the permissions given to users within a tenant. Here we will configure two roles—an
admin role that allows for administration of our environment and a Member role that is given
to ordinary users who will be using the cloud environment.

Getting ready
To begin with, ensure you're logged in to our OpenStack Compute host—where OpenStack
Identity Service has been installed—or an appropriate Ubuntu client that has access to where
OpenStack Identity Service is installed.

If the keystone client tool isn't available, this can be installed on an Ubuntu client to manage
our OpenStack Identity Service by issuing the following commands:

sudo apt-get update
sudo apt-get -y install python-keystoneclient

Ensure that we have our environment set correctly to access our OpenStack environment:

export ENDPOINT=172.16.0.1
export SERVICE_TOKEN=ADMIN
export SERVICE_ENDPOINT=http://${ENDPOINT}:35357/v2.0

www.it-ebooks.info

http://www.it-ebooks.info/

Keystone OpenStack Identity Service

58

How to do it...
To create the required roles in our OpenStack environment, perform the following steps:

1. Creation of the admin role is done as follows:
admin role

keystone role-create --name admin

2. To create the Member role we repeat the step, specifying the Member role:

Member role

keystone role-create --name Member

How it works...
Creation of the roles is simply achieved by using the keystone client, specifying the role-
create option with the following syntax:

keystone role-create --name role_name

The role_name attribute can't be arbitrary. The admin role has been set in /etc/
keystone/policy.json as having administrative rights:

{
 "admin_required": [["role:admin"], ["is_admin:1"]]
}

And when we configure the OpenStack Dashboard, Horizon, it has the Member role configured
as the default when users are created in that interface.

On creation of the role, this returns an ID associated with it that we use when assigning roles
to users. To see a list of roles and the associated IDs in our environment, we can issue the
following command:

keystone role-list

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

59

Creating tenants
A tenant in OpenStack is a project. Users can't be created without having a tenant assigned
to them so these must be created first. For this section, we will create a tenant for our users,
called cookbook.

Getting ready
To begin with, ensure you're logged into our OpenStack Compute host—where OpenStack
Identity Service has been installed—or an appropriate Ubuntu client that has access to where
OpenStack Identity Service is installed.

If the keystone client tool isn't available, this can be installed on an Ubuntu client—to
manage our OpenStack Identity Service—by issuing the following command:

sudo apt-get update

sudo apt-get -y install python-keystoneclient

Ensure that we have our environment set correctly to access our OpenStack environment:

export ENDPOINT=172.16.0.1

export SERVICE_TOKEN=ADMIN

export SERVICE_ENDPOINT=http://${ENDPOINT}:35357/v2.0

How to do it...
To create a tenant in our OpenStack environment, perform the following step:

1. Creation of a tenant called cookbook is done as follows:
keystone tenant-create --name cookbook --description
 "Default Cookbook Tenant" --enabled true

How it works...
Creation of the roles is simply achieved by using the keystone client, specifying the
tenant-create option with the following syntax:

keystone tenant-create --name tenant_name --description "Default
 Cookbook Tenant" --enabled true

The tenant_name is an arbitrary string and must not contain spaces. On creation of the tenant,
this returns an ID associated with it that we use when adding users to this tenant. To see a list of
tenants and the associated IDs in our environment, we can issue the following command:

keystone tenant-list

www.it-ebooks.info

http://www.it-ebooks.info/

Keystone OpenStack Identity Service

60

Adding users
Adding users to OpenStack Identity Service requires that the user have a tenant they can exist
in, and have a role defined that can be assigned to them. For this section, we will create two
users. The first user will be named admin and will have the admin role assigned to them in
the cookbook tenant. The second user will be named demo and will have the Member role
assigned to them in the same cookbook tenant.

Getting ready
To begin with, ensure you're logged into our OpenStack Compute host—where OpenStack
Identity Service has been installed—or an appropriate Ubuntu client that has access to where
OpenStack Identity Service is installed.

If the keystone client tool isn't available, this can be installed on an Ubuntu client—to
manage our OpenStack Identity Service—by issuing the following commands:

sudo apt-get update

sudo apt-get -y install python-keystoneclient

Ensure that we have our environment set correctly to access our OpenStack environment:

export ENDPOINT=172.16.0.1

export SERVICE_TOKEN=ADMIN

export SERVICE_ENDPOINT=http://${ENDPOINT}:35357/v2.0

How to do it...
To create the required users in our OpenStack environment, perform the following steps:

1. To create a user in the cookbook tenant, we first need to get the cookbook tenant
ID. To do this, issue the following command, which we conveniently store in a variable
named TENANT_ID with the tenant-list option:
TENANT_ID=$(keystone tenant-list | awk '/\ cookbook\ /
 {print $2}')

2. Now that we have the tenant ID, creation of the admin user in the cookbook tenant
is done as follows, using the user-create option, choosing a password for the user:
PASSWORD=openstack

keystone user-create --name admin --tenant_id $TENANT_ID --
 pass $PASSWORD --email root@localhost --enabled true

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

61

3. As we are creating the admin user, to which we are assigning the admin role, we
need the admin role ID. In a similar way to the discovery of the tenant ID in step 1,
we pick out the ID of the admin role and conveniently store it in a variable to use
when assigning the role to the user with the role-list option:
ROLE_ID=$(keystone role-list | awk '/\ admin\ /
 {print $2}')

4. To assign the role to our user, we need to use the user ID that was returned when
we created that user. To get this, we can list the users and pick out the ID for that
particular user with the following user-list option:
USER_ID=$(keystone user-list | awk '/\ admin\ /
 {print $2}')

5. Finally, with the tenant ID, user ID, and an appropriate role ID available, we can
assign that role to the user, with the following user-role-add option:
keystone user-role-add --user $USER_ID --role $ROLE_ID --
 tenant_id $TENANT_ID

6. To create the demo user in the cookbook tenant with the Member role assigned we
repeat the process as defined in steps 1 to 5:

Get the cookbook tenant ID

TENANT_ID=$(keystone tenant-list | awk '/\ cookbook\ /
 {print $2}')

Create the user

PASSWORD=openstack

keystone user-create --name demo --tenant_id $TENANT_ID --
 pass $PASSWORD --email demo@localhost --enabled true

Get the Member role ID

ROLE_ID=$(keystone role-list | awk '/\ Member\ /
 {print $2}')

Get the demo user ID

USER_ID=$(keystone user-list | awk '/\ demo\ / {print $2}')

Assign the Member role to the demo user in cookbook

keystone user-role-add --user $USER_ID --role
 $ROLE_ID --tenant_id $TENANT_ID

www.it-ebooks.info

http://www.it-ebooks.info/

Keystone OpenStack Identity Service

62

How it works...
Adding users in OpenStack Identity Service requires that the tenant and roles for that user
be created first. Once these are available, in order to use the keystone command-line client,
we need the IDs of the tenants and IDs of the roles that are to be assigned to the user in
that tenant. Note that a user can be a member of many tenants and can have different roles
assigned in each.

To create a user with the user-create option, the syntax is as follows:

keystone user-create --name user_name --tenant_id TENANT_ID --pass
 password --email email_address --enabled true

The user_name attribute is an arbitrary name but cannot contain any spaces. A password
attribute must be present. In the previous examples, these were set to openstack. The
email_address attribute must also be present.

To assign a role to a user with the user-role-add option, the syntax is as follows:

keystone user-role-add --user USER_ID --role ROLE_ID --tenant_id
 TENANT_ID

This means we need to have the ID of the user, the ID of the role, and the ID of the tenant in
order to assign roles to users. These IDs can be found using the following commands:

keystone tenant-list

keystone role-list

keystone user-list

Defining service endpoints
Each of the services in our cloud environment runs on a particular URL and port—these are
the endpoint addresses for our services. When a client communicates with our OpenStack
environment that runs OpenStack Identity Service, it is this service that returns the endpoint
URLs, which the user can then use in an OpenStack environment. To enable this feature, we
must define these endpoints. In a cloud environment, though, we can define multiple regions.
Regions can be thought of as different datacenters, which would imply that they would have
different URLs or IP addresses. Under OpenStack Identity Service, we can define these URL
endpoints separately for each region. As we only have a single environment, we will reference
this as RegionOne.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

63

Getting ready
To begin with, ensure you're logged in to our OpenStack Compute host—where OpenStack
Identity Service has been installed—or an appropriate Ubuntu client that has access to where
OpenStack Identity Service is installed.

If the keystone client tool isn't available, it can be installed on an Ubuntu client to manage
our OpenStack Identity Service, by issuing the following commands:

sudo apt-get update

sudo apt-get -y install python-keystoneclient

How to do it...
Defining the services and service endpoints in OpenStack Identity Service involves running
the keystone client command to specify the different services and the URLs that they run
from. Although we might not have all services currently running in our environment, we will be
configuring them within OpenStack Identity Service for future use.

To manage our OpenStack Identity Service, we have to authenticate
with the service itself. Without any users configured though, we
make use of an admin token to send directly back to the admin
port of OpenStack Identity Service. These are also known as
a service token and service port. These details are configured
directly in /etc/keystone/keystone.conf, as follows:

admin_port = 35357
admin_token = ADMIN

To define endpoints for services in our OpenStack environment, carry out the following steps:

1. First, we set the service token and service endpoint, which point to the service port of
our OpenStack Identity Service.
export ENDPOINT=172.16.0.1
export SERVICE_TOKEN=ADMIN
export SERVICE_ENDPOINT=http://${ENDPOINT}:35357/v2.0

2. We can now define the actual services that OpenStack Identity Service needs to know
about in our environment.
OpenStack Compute Nova API Endpoint
keystone service-create --name nova --type compute
 --description 'OpenStack Compute Service'

OpenStack Compute EC2 API Endpoint
keystone service-create --name ec2 --type ec2
 --description 'EC2 Service'

www.it-ebooks.info

http://www.it-ebooks.info/

Keystone OpenStack Identity Service

64

Glance Image Service Endpoint

keystone service-create --name glance --type image
 --description 'OpenStack Image Service'

Keystone Identity Service Endpoint

keystone service-create --name keystone --type identity
 --description 'OpenStack Identity Service'

Nova Volume Endpoint

keystone service-create --name volume --type volume
 --description 'Volume Service'

3. After we have done this, we can add in the service endpoint URLs that these services
run on. To do this, we need the ID that was returned for each of the service endpoints
created in the previous step. This is then used as a parameter when specifying the
endpoint URLS for that service.

Note that OpenStack Identity Service can be configured to
service requests on three URLs: a public facing URL (that the end
users use), an administration URL (that users with administrative
access can use that might have a different URL), and an internal
URL (that is appropriate when presenting the services on either
side of a firewall to the public URL).

For the following services, we will configure the public and internal service URLs to be the
same, which is appropriate for our environment.

OpenStack Compute Nova API

ID=$(keystone service-list | awk '/\ nova\ / {print $2}')

PUBLIC="http://$ENDPOINT:8774/v2/\$(tenant_id)s"

ADMIN=$PUBLIC

INTERNAL=$PUBLIC

keystone endpoint-create --region RegionOne --service_id $ID
 --publicurl $PUBLIC --adminurl $ADMIN --internalurl $INTERNAL

OpenStack Compute EC2 API

ID=$(keystone service-list | awk '/\ ec2\ / {print $2}')

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

65

PUBLIC="http://$ENDPOINT:8773/services/Cloud"

ADMIN="http://$ENDPOINT:8773/services/Admin"

INTERNAL=$PUBLIC

keystone endpoint-create --region RegionOne --service_id $ID
 --publicurl $PUBLIC --adminurl $ADMIN --internalurl $INTERNAL

Glance Image Service

ID=$(keystone service-list | awk '/\ glance\ / {print $2}')

PUBLIC="http://$ENDPOINT:9292/v1"

ADMIN=$PUBLIC

INTERNAL=$PUBLIC

keystone endpoint-create --region RegionOne --service_id $ID
 --publicurl $PUBLIC --adminurl $ADMIN --internalurl $INTERNAL

Keystone OpenStack Identity Service

ID=$(keystone service-list | awk '/\ keystone\ / {print $2}')

PUBLIC="http://$ENDPOINT:5000/v2.0"

ADMIN="http://$ENDPOINT:35357/v2.0"

INTERNAL=$PUBLIC

keystone endpoint-create --region RegionOne --service_id $ID
 --publicurl $PUBLIC --adminurl $ADMIN --internalurl $INTERNAL

Nova Volume

ID=$(keystone service-list | awk '/\ volume\ / {print $2}')

PUBLIC="http://$ENDPOINT:8776/v1/%(tenant_id)s"

ADMIN=$PUBLIC

INTERNAL=$PUBLIC

keystone endpoint-create --region RegionOne --service_id $ID
 --publicurl $PUBLIC --adminurl $ADMIN --internalurl $INTERNAL

www.it-ebooks.info

http://www.it-ebooks.info/

Keystone OpenStack Identity Service

66

How it works...
Configuring the services and endpoints within OpenStack Identity Service is done with the
keystone client command.

We first add the service definitions, by using the keystone client and the service-create
option with the following syntax:

keystone service-create --name service_name --type service_type
 --description 'description'

service_name is an arbitrary name or label defining a service of a particular type. We refer
to the name when defining the endpoint to fetch the ID of the service.

The type option can be one of the following: compute, object-store, image-service,
and identity-service. Note that we haven't configured the OpenStack Storage service
(type object-store) at this stage.

The description field is again an arbitrary field describing the service.

Once we have added in our service definitions, we can tell OpenStack Identity Service where
those services run from, by defining the endpoints using the keystone client and the
endpoint-create option, with the following syntax:

keystone endpoint-create --region region_name --service_id service_id
 --publicurl public_url --adminurl admin_url --internalurl
 internal_url

Where service_id is the ID of the service when we created the service definitions in the
first step. The list of our services and IDs can be obtained by running the following command:

keystone service-list

As OpenStack is designed for global deployments, a region defines a physical datacenter
or a geographical area that comprises of multiple connected datacenters. For our purpose,
we define just a single region—RegionOne. This is an arbitrary name that we can reference
when specifying what runs in what datacenter/area and we carry this through to when we
configure our client for use with these regions. All of our services can be configured to run
on three different URLs, as follows, depending on how we want to configure our OpenStack
cloud environment:

 f The public_url parameter is the URL that end users would connect on. In a public
cloud environment, this would be a public URL that resolves to a public IP address.

 f The admin_url parameter is a restricted address for conducting administration.
In a public deployment, you would keep this separate from the public_URL by
presenting the service you are configuring on a different, restricted URL. Some
services have a different URI for the admin service, so this is configured using
this attribute.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

67

 f The internal_url parameter would be the IP or URL that existed only within the
private local area network. The reason for this is that you are able to connect to
services from your cloud environment internally without connecting over a public IP
address space, which could incur data charges for traversing the Internet. It is also
potentially more secure and less complex to do so.

Once the initial keystone database has been set up, after
running the initial keystone-manage db_sync command
on the OpenStack Identity Service server, administration can
be done remotely using the keystone client.

Configuring the service tenant and
service users

With the service endpoints created, we can now configure them so that our OpenStack
services can utilize them. To do this, each service is configured with a username and
password within a special service tenant. For each service that uses OpenStack Identity
Service for authentication and authorization, we then specify these details in their relevant
configuration file, when setting up that service.

Getting ready
To begin with, ensure you're logged in to our OpenStack Compute host—where OpenStack
Identity Service has been installed—or an appropriate Ubuntu client that has access to where
OpenStack Identity Service is installed.

If the keystone client tool isn't available, this can be installed on an Ubuntu client to manage
our OpenStack Identity Service, by issuing the following command:

sudo apt-get update

sudo apt-get -y install python-keystoneclient

Ensure that we have our environment set correctly to access our OpenStack environment:

export ENDPOINT=172.16.0.1

export SERVICE_TOKEN=ADMIN

export SERVICE_ENDPOINT=http://${ENDPOINT}:35357/v2.0

www.it-ebooks.info

http://www.it-ebooks.info/

Keystone OpenStack Identity Service

68

How to do it...
To configure an appropriate service tenant, carry out the following steps:

1. Create the service tenant as follows:
keystone tenant-create --name service --description
 "Service Tenant" --enabled true

2. Record the ID of the service tenant, so that we can assign service users to this ID,
as follows:
SERVICE_TENANT_ID=$(keystone tenant-list | awk '/\ service\
 / {print $2}')

3. For each of the services in this section, we will create the user accounts to be named
the same as the services and set the password to be the same as the service name
too. For example, we will add a user called nova, with a password nova in the service
tenant, using the user-create option, as follows:
keystone user-create --name nova --pass nova --tenant_id
 $SERVICE_TENANT_ID --email nova@localhost
 --enabled true

4. We then repeat this for each of our other services that will use OpenStack
Identity Service:
keystone user-create --name glance --pass glance
 --tenant_id $SERVICE_TENANT_ID
 --email glance@localhost --enabled true

keystone user-create --name keystone --pass keystone
 --tenant_id $SERVICE_TENANT_ID --email
 keystone@localhost --enabled true

5. We can now assign these users the admin role in the service tenant. To do this,
we use the user-role-add option after retrieving the user ID of the nova user.
For example, to add the admin role to the nova user in the service tenant, we do
the following:
Get the nova user id

USER_ID=$(keystone user-list | awk '/\ nova\ / {print $2}')

Get the admin role id

ROLE_ID=$(keystone role-list | awk '/\ admin\ /
 {print $2}')

Assign the nova user the admin role in service tenant

keystone user-role-add --user $USER_ID --role $ROLE_ID
 --tenant_id $SERVICE_TENANT_ID

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

69

6. We then repeat this for our other two service users, glance and keystone:

Get the glance user id

USER_ID=$(keystone user-list | awk '/\ glance\ /
 {print $2}')

Assign the glance user the admin role in service tenant

keystone user-role-add --user $USER_ID --role $ROLE_ID
 --tenant_id $SERVICE_TENANT_ID

Get the keystone user id

USER_ID=$(keystone user-list | awk '/\ keystone\ /
 {print $2}')

Assign the glance user the admin role in service tenant

keystone user-role-add --user $USER_ID --role $ROLE_ID
 --tenant_id $SERVICE_TENANT_ID

How it works...
Creation of the service tenant, populated with the services required to run OpenStack, is no
different from creating any other users on our system that require the admin role. We create
the usernames and passwords and ensure they exist in the service tenant.

The reason for the service tenant is that each service itself has to authenticate with keystone
in order for it to be available within OpenStack. Configuration of that service is then done
using these credentials. For example, for glance we specify the following in /etc/glance/
glance-registry-api.ini, when used with OpenStack Identity Service, which matches
what we created previously:

[filter:authtoken]

paste.filter_factory = keystone.middleware.auth_token:filter_factory

service_protocol = http

service_host = 172.16.0.1

service_port = 5000

auth_host = 172.16.0.1

auth_port = 35357

auth_protocol = http

auth_uri = http://172.16.0.1:5000/

admin_tenant_name = service

admin_user = glance

admin_password = glance

www.it-ebooks.info

http://www.it-ebooks.info/

Keystone OpenStack Identity Service

70

Configuring OpenStack Image Service to use
OpenStack Identity Service

Configuring OpenStack Image Service to use OpenStack Identity Service is required to allow
our OpenStack Compute to operate correctly. OpenStack Image Service is covered in more
detail in Chapter 7, Glance OpenStack Image Service.

Getting ready
To begin with, ensure you're logged in to our OpenStack Compute host or the host that is
running OpenStack Image Service.

If the OpenStack Image Service host isn't running on the same server as OpenStack Identity
Service, you will need to install the python-keystone package, as follows:

sudo apt-get update
sudo apt-get -y python-keystone

How to do it...
To configure OpenStack Image Service to use OpenStack Identity Service, carry out the
following steps:

1. We first edit the /etc/glance/glance-api-paste.ini file and configure the
[filter:authtoken] section found at the bottom of this file, to match our glance
service user configured previously:
[filter:authtoken]
paste.filter_factory = keystone.middleware.auth_token:filter_
factory
service_protocol = http
service_host = 172.16.0.1
service_port = 5000
auth_host = 172.16.0.1
auth_port = 35357
auth_protocol = http
auth_uri = http://172.16.0.1:5000/
admin_tenant_name = service
admin_user = glance
admin_password = glance

2. With the file saved, we add in the following at the bottom of the /etc/glance/
glance-api.conf file, to tell OpenStack Image Service to utilize OpenStack Identity
Service and the information in the glance-api-paste.ini file:
[paste_deploy]
flavor = keystone

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

71

3. We repeat this process for the /etc/glance/glance-registry-paste.ini file,
configuring the glance service user in the [filter:authtoken] section:
[filter:authtoken]

paste.filter_factory = keystone.middleware.auth_token:filter_
factory

service_protocol = http

service_host = 172.16.0.1

service_port = 5000

auth_host = 172.16.0.1

auth_port = 35357

auth_protocol = http

auth_uri = http://172.16.0.1:5000/

admin_tenant_name = service

admin_user = glance

admin_password = glance

4. Then, we add the following to the corresponding /etc/glance/glance-registry.
conf file, to use this information and enable it to use OpenStack Identity Service:
[paste_deploy]
flavor = keystone

5. Finally, we restart the two OpenStack Identity Service processes to pick up
the changes:

sudo restart glance-api

sudo restart glance-registry

How it works...
OpenStack Image Service runs two processes. These are the glance-api, which is the service
that our clients and services talk to, and the glance-registry process that manages the objects
on the disk and in the database registry. Both of these services need to have matching
credentials that were defined previously in OpenStack Identity Service in their configuration
files, in order for these services to allow a user to authenticate with the service successfully.

Refer to the Managing images with OpenStack Image Service recipe in
Chapter 7, Glance OpenStack Image Service, to upload a new image
in our OpenStack Identity Service managed environment, as our test
images uploaded under deprecated_auth will not be accessible.

www.it-ebooks.info

http://www.it-ebooks.info/

Keystone OpenStack Identity Service

72

Configuring OpenStack Compute to use
OpenStack Identity Service

In our configuration of OpenStack Compute, we are using deprecated_auth, which stores
user and project information within the nova database, managed by the nova-manage
command directly on the OpenStack Compute host. This authentication method is limited in
its use and will likely be dropped from future versions of OpenStack.

With OpenStack Identity Service installed and configured, we now need to tell our OpenStack
Compute service that it can be used instead of the deprecated_auth mechanism.

Note that any existing users and projects created in deprecated_auth
are not moved over to OpenStack Identity Service automatically and will
need recreating again under this new service.

Getting ready
To begin with, ensure you're logged into our OpenStack Compute host.

How to do it...
Replacing the authentication mechanism in our OpenStack Compute sandbox environment is
simply achieved with the following steps:

1. We first ensure that our OpenStack Compute host has the required python-
keystone package installed, if this host is a standalone Compute host, as follows:
sudo apt-get update
sudo apt-get -y install python-keystone

2. Configuration of the OpenStack Compute service to use the OpenStack Identity
Service is first done by filling in the [filter:authtoken] section with the details
that we created for the nova service user in the previous section, as follows:
[filter:authtoken]
paste.filter_factory = keystone.middleware.auth_token:
filter_factory
service_protocol = http
service_host = 172.16.0.1
service_port = 5000
auth_host = 172.16.0.1
auth_port = 35357
auth_protocol = http
auth_uri = http://172.16.0.1:5000/
admin_tenant_name = service
admin_user = nova
admin_password = nova

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

73

3. With the api-paste.ini file configured correctly, we edit /etc/nova/nova.conf
to inform it to use the paste file and set keystone as the authentication mechanism
by adding in the following lines:
--api-paste_config=/etc/nova/api-paste.ini

--keystone_ec2_url=http://172.16.0.1:5000/v2.0/ec2tokens

--auth_strategy=keystone

4. It is important to remove the following line from /etc/nova/nova.conf:
--use_deprecated_auth

5. With our OpenStack Identity Service running, we can restart our OpenStack Compute
services to pick up this authentication change, as follows:

sudo restart nova-api

How it works...
Configuration of OpenStack Compute to use OpenStack Identity Service first involves editing
the /etc/nova/api-paste.ini file and filling in the [filter:authtoken] part of the
file with details of the nova service user we created in the previous section.

We then configure the /etc/nova/nova.conf file, which is directed at this paste file, as
well as specifying that the auth_strategy option is set to keystone.

Using OpenStack Compute with OpenStack
Identity Service

OpenStack Identity Service underpins all of the OpenStack services. With OpenStack
Image Service configured to also use OpenStack Identity Service, the OpenStack Compute
environment can now be used.

Getting ready
To begin with, log in to an Ubuntu client and ensure that euca2ools and Nova Client are
available. If they aren't, they can be installed as follows:

sudo apt-get update

sudo apt-get -y euca2ools python-novaclient

www.it-ebooks.info

http://www.it-ebooks.info/

Keystone OpenStack Identity Service

74

How to do it...
To use OpenStack Identity Service as the authentication mechanism in our OpenStack
environment, we need to set our environment variables accordingly. This is achieved as
follows, for our demo user:

1. We first have to configure our environment to use OpenStack Identity Service
as our authentication. For Nova Client, we do this by creating an environment
resource configuration file with the required variables configured (for example, /
home/user/keystonerc):
NOVA_API_HOST=172.16.0.1

KEYSTONE_API_HOST=172.16.0.1

KEYSTONE_TENANT="cookbook"

KEYSTONE_USERNAME="demo"

KEYSTONE_PASSWORD="openstack"

NOVA_REGION="RegionOne"

export NOVA_USERNAME=$KEYSTONE_USERNAME

export NOVA_PROJECT_ID=$KEYSTONE_TENANT

export NOVA_PASSWORD=$KEYSTONE_PASSWORD

export NOVA_API_KEY=$KEYSTONE_PASSWORD

export NOVA_REGION_NAME=$NOVA_REGION

export NOVA_URL="http://${NOVA_API_HOST}:5000/v2.0/"

export NOVA_VERSION="1.1"

export OS_AUTH_USER=$KEYSTONE_USERNAME

export OS_AUTH_KEY=$KEYSTONE_PASSWORD

export OS_AUTH_TENANT=$KEYSTONE_TENANT

export OS_AUTH_URL="http://${KEYSTONE_API_HOST}:5000/v2.0/"

export OS_AUTH_STRATEGY="keystone"

2. We can now simply source this into our environment and use the environment,
as before:
. keystonerc

3. We can test that this is successful by issuing some nova commands, for example:
nova list

nova credentials

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

75

4. To use euca2ools, we create the EC2 credentials in OpenStack Identity Service
separately. In order to do this, we use Nova Client to create our X509 certificates that
euca2tools relies on. To do this, we ensure we have sourced in the details, as shown
earlier, and then run the following command:
nova x509-get-root-cert

nova x509-create-cert

5. We can now create our EC2 credentials using the ec2-credentials-create option.

Note that if the environment resource file (for example, /home/user/
keystonerc) has been sourced into the environment, this will conflict
with the SERVICE_TOKEN and SERVICE_ENDPOINT environment
variables as user/password authentication takes precedence.

6. Clear your environment before setting the following environment variables:
export ENDPOINT=172.16.0.1

export SERVICE_TOKEN=ADMIN

export SERVICE_ENDPOINT=http://${ENDPOINT}:35357/v2.0

Get the demo user ID

USER_ID=$(keystone user-list | awk '/\ demo\ / {print $2}')

Get the cookbook tenant ID

TENANT_ID=$(keystone tenant-list | awk '/\ cookbook\ /
 {print $2}')

Create the EC2 Credentials

keystone ec2-credentials-create --user $USER_ID
 --tenant_id $TENANT_ID

7. We then take the output from the ec2-credentials-create option to populate an
ec2rc file with the following, replacing the EC2_ACCESS_KEY and EC2_SECRET_KEY
with the corresponding information from the output:
NOVA_API_HOST=172.16.01

NOVARC=$(readlink -f "${BASH_SOURCE:-${0}}" 2>/dev/null) ||
 NOVARC=$(python -c 'import os,sys; print
 os.path.abspath(os.path.realpath(sys.argv[1]))'
 "${BASH_SOURCE:-${0}}")

NOVA_KEY_DIR=${NOVARC%/*}

export EC2_ACCESS_KEY=f2aed2792f3a4112bcdf608e6b81ae6f

export EC2_SECRET_KEY=ae3c637e7db94601b98e6729c0c2a0f7

export EC2_URL=http://$NOVA_API_HOST:8773/services/Cloud

www.it-ebooks.info

http://www.it-ebooks.info/

Keystone OpenStack Identity Service

76

export EC2_USER_ID=42 # nova does not use user id,
 but bundling requires it

export EC2_PRIVATE_KEY=${NOVA_KEY_DIR}/demo.pem

export EC2_CERT=${NOVA_KEY_DIR}/cert.pem

export NOVA_CERT=${NOVA_KEY_DIR}/cacert.pem

export EUCALYPTUS_CERT=${NOVA_CERT} # euca-bundle-image
 requires this set

export S3_URL=http://$NOVA_API_HOST:3333

alias ec2-bundle-image="ec2-bundle-image --cert ${EC2_CERT}
 --privatekey ${EC2_PRIVATE_KEY} --user 42 --ec2cert
 ${NOVA_CERT}"

alias ec2-upload-bundle="ec2-upload-bundle -a
 ${EC2_ACCESS_KEY} -s ${EC2_SECRET_KEY} --url ${S3_URL}
 --ec2cert ${NOVA_CERT}"

8. With this created, we can source this in to our environment to use euca2ools:
. ec2rc

9. We then utilize the euca- commands as follows, for example:

euca-describe-instances

How it works...
Configuring our environment to use OpenStack Identity Service for authentication for Nova
Client and euca2ools so that we can launch our instances involves manually creating an
environment resource file with the appropriate environment variables.

To configure our environment to use euca2ools, we run an extra option that creates the
appropriate EC2_ACCESS_KEY and EC2_SECRET_KEY environment variables within
OpenStack Identity Service as well as extracting the root cert and creating a cert for our user
to allow us to use the cloud-util tools to upload images.

Our environment passes on our username, password, and tenant to OpenStack Identity
Service for authentication and passes back, behind the scenes, an appropriate token, which
validates our user. This then allows us to seamlessly spin up instances within our tenancy
(project) of cookbook.

www.it-ebooks.info

http://www.it-ebooks.info/

4
Installing OpenStack

Storage
In this chapter, we will cover:

 f Creating an OpenStack Storage sandbox environment

 f Installing the OpenStack Storage services

 f Configuring storage

 f Configuring replication

 f Configuring OpenStack Storage Service

 f Configuring the OpenStack Storage proxy server

 f Configuring Account Server

 f Configuring Container Server

 f Configuring Object Server

 f Making the Object, Account, and Container rings

 f Stopping and starting OpenStack Storage

 f Testing OpenStack Storage

 f Setting up SSL access

 f Configuring OpenStack Storage with OpenStack Identity Service

www.it-ebooks.info

http://www.it-ebooks.info/

Installing OpenStack Storage

78

Introduction
OpenStack Object Storage, also known as Swift, is the service that allows for massively
scalable and highly redundant storage on commodity hardware. This service is analogous
to Amazon's S3 storage service and is managed in a similar way under OpenStack. With
OpenStack Storage, we can store many objects of virtually unlimited size—restricted by the
available hardware—and grow our environment as needed, to accommodate our storage.
The highly redundant nature of OpenStack Storage is ideal for archiving data (such as logs)
as well as providing a storage system that OpenStack Compute can use for virtual machine
instance templates.

In this chapter, we will set up a single virtual machine that will represent a multi-node test
environment for OpenStack Storage. Although we are operating on a single host, the steps
involved mimic a four-device setup, so we see a lot of duplication and replication of our
configuration files.

Creating an OpenStack Storage sandbox
environment

Creating a sandbox environment allows us to discover and experiment with the OpenStack
Storage service. This service gives us the ability to store objects such as images or archives
of logs.

To do this, we will use an Open Source virtual server program from Oracle, named VirtualBox,
which is freely available from http://www.virtualbox.org for Windows, Mac OS X,
and Linux. The result of this environment will be a virtual machine (with connectivity to any
other OpenStack hosts in our sandbox environment) with two disks installed. It will act as the
OpenStack Storage host used in the rest of this chapter.

It is assumed the computer you will be using to run your test environment in has enough
processing power, with hardware virtualization support (modern AMDs and Intel iX processors)
and at least 4 GB of RAM. The virtual machine we will be creating will have all components
installed to get you familiar with the OpenStack Storage services.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

79

In this section, we will have created the following specification for a virtual machine:

We will install this virtual machine with Ubuntu 12.04 LTS Server 64-bit and assign the name
openstack2. We will assign 172.16.0.2 as the IP address on eth1 (the host-only interface
that is presented by VirtualBox).

Getting ready
To begin with, we must download VirtualBox from http://www.virtualbox.org/ and
then follow the installation procedure, once it has been downloaded.

We will also need to download the Ubuntu 12.04 LTS Server ISO CD-ROM image from
http://www.ubuntu.com/.

If a vboxnet0 host-only adapter doesn't exist in the Virtual Box environment (as created in
Chapter 1, Starting OpenStack Compute), run the following commands in a shell to create a
172.16.0.0/16 network that our OpenStack Storage virtual machine can use to connect
to other virtual machines:

Public Network vboxnet0 (172.16.0.0/16)

VBoxManage hostonlyif create

VBoxManage hostonlyif ipconfig vboxnet0 --ip 172.16.0.254 --netmask
 255.255.0.0

www.it-ebooks.info

http://www.it-ebooks.info/

Installing OpenStack Storage

80

How to do it...
To create our sandbox environment within VirtualBox, we will create a single virtual machine
that allows us to run all of the OpenStack Storage services. This virtual machine will be
configured with at least 2 GB of RAM and two 20 GB hard drives with two network interfaces.
The first will be a NAT interface that allows our virtual machine to connect to the network
outside of VirtualBox to download packages, and the second interface will be the public
interface of our OpenStack Storage host.

Carry out the following steps to create the virtual machine that will be used to run OpenStack
Storage services:

1. In VirtualBox, create a new virtual machine with the following specification:

 � One CPU

 � 2048 MB RAM

 � Two 20 GB hard disks

 � Two network adapters, with the attached Ubuntu 12.04 ISO

This can either be done using the VirtualBox New Virtual Machine Wizard or by
running the following commands in a shell on our computer:

Create VirtualBox Machine

VBoxManage createvm --name openstack2 --ostype Ubuntu_64
 --register

VBoxManage modifyvm openstack2 --memory 1024 --nic1 nat
 --nic2 hostonly --hostonlyadapter2 vboxnet0

Create CD-Drive and Attach ISO

VBoxManage storagectl openstack2 --name "IDE Controller"
 --add ide --controller PIIX4 --hostiocache on
 --bootable on

VBoxManage storageattach openstack2 --storagectl "IDE
 Controller" --type dvddrive --port 0 --device 0
 --medium Downloads/ubuntu-12.04-server-amd64.iso

Create and attach SATA Interface and Hard Drive

VBoxManage storagectl openstack2 --name "SATA Controller"
 --add sata --controller IntelAHCI --hostiocache on
 --bootable on

VBoxManage createhd --filename openstack2.vdi --size 20480

VBoxManage storageattach openstack2 --storagectl
 "SATA Controller" --port 0 --device 0 --type hdd
 --medium openstack2.vdi

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

81

Create and attach second Hard Drive
VBoxManage createhd --filename openstack2-disk2.vdi
 --size 20480
VBoxManage storageattach openstack2 --storagectl
 "SATA Controller" --port 1 --device 0 --type hdd
 --medium openstack2-disk2.vdi

2. Do this by selecting the OpenStack2 virtual machine and then clicking on the
Start button, or by running the following command:
VBoxManage startvm openstack2 --type gui

3. This will take us through a standard text-based Ubuntu installer, as this is the
server edition. Choose appropriate settings for your region, and choose Eth0 as the
main interface (this is the first interface in your VirtualBox VM settings—our NATed
interface). When prompted for software selection, just choose OpenSSH Server
and continue. For the user, create a user named openstack with the password
openstack. This will help in using this book to troubleshoot your own environment.

4. Once installed, log in as the user openstack.

5. We can now configure networking on our OpenStack Storage node. To do this, we
will create a static address on the second interface, eth1, which will be the public
interface. To do this, edit the /etc/network/interfaces file with the following
contents:
The loopback network interface
auto lo
iface lo inet loopback

The primary network interface
auto eth0
iface eth0 inet dhcp

Public Interface
auto eth1
iface eth1 inet static
 address 172.16.0.2
 netmask 255.255.0.0
 network 172.16.0.0
 broadcast 172.16.255.255

6. Save the file and bring up the interface with the following command:

sudo ifup eth1

Congratulations! We have successfully created the VirtualBox virtual
machine running Ubuntu, which is able to run OpenStack Storage.

www.it-ebooks.info

http://www.it-ebooks.info/

Installing OpenStack Storage

82

How it works...
What we have done is create a virtual machine that will become the basis of our OpenStack
Storage host. It has the necessary disk space and networking in place to allow you to access
this virtual machine from your host personal computer and any other virtual machines in our
OpenStack sandbox environment.

There's more...
There are a number of virtualization products available that are suitable for trying OpenStack,
for example, VMware Server and VMware Player. With VirtualBox, you can also script your
installations by using a tool named Vagrant. While Vagrant is outside the scope of this book,
the steps provided here allow you to investigate this option at a later date.

See also
 f The Creating a sandbox environment with VirtualBox recipe in Chapter 1, Starting

OpenStack Compute

Installing the OpenStack Storage services
Now that we have a machine to run our OpenStack Storage service, we can install the
packages required to run this service.

To do this, we will create a machine that runs all the appropriate services for running
OpenStack Storage:

 f swift: The underlying common files shared amongst other OpenStack Storage
packages, including the swift client

 f swift-proxy: The proxy service that the clients connect to, that sits in front of the
many swift nodes that can be configured

 f swift-account: The account service for accessing OpenStack Storage

 f swift-object: The package responsible for object storage and orchestration
of rsync

 f swift-container: The package for the OpenStack Storage Container Server

 f memcached: A high-performance memory object caching system

 f ntp: Network Time Protocol is essential in a multi-node environment so that the
nodes have the same time (tolerance is up to five seconds, and outside of this you
get unpredictable results)

 f xfsprogs: The underlying filesystem is XFS in our OpenStack Storage installation

 f curl: Command-line web interface tool

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

83

Getting ready
Ensure that you are logged in to your openstack2 virtual machine.

How to do it...
Installation of OpenStack in Ubuntu 12.04 is simply achieved using the familiar apt-get tool
as the OpenStack packages are available from the official Ubuntu repositories.

1. We can install the OpenStack Storage packages as follows:
sudo apt-get update

sudo apt-get install -y swift swift-proxy swift-account
 swift-container swift-object memcached xfsprogs curl

2. Once the installation is complete, we need to install and configure ntp as follows:
sudo apt-get -y install ntp

3. NTP is important in any multi-node environment, though in the OpenStack
environment it is a requirement for server times to be kept in sync. Although
we are configuring only one node, not only will accurate time-keeping help with
troubleshooting, but it will also allow us to grow our environment as needed in the
future. To do this, we edit /etc/ntp.conf, with the following contents:
Replace ntp.ubuntu.com with an NTP server on your network

server ntp.ubuntu.com

server 127.127.1.0

fudge 127.127.1.0 stratum 10

4. Once ntp has been configured correctly, we restart the service to pick up the change:

sudo service ntp restart

How it works...
Installation of OpenStack Storage from the main Ubuntu package repository represents a very
straightforward and well-understood way of getting OpenStack onto our Ubuntu server. This
adds a greater level of certainty around stability and upgrade paths by not deviating away
from the main archives.

There's more...
There are various ways to install OpenStack, from source code building to installation from
packages, but this represents the easiest and most consistent method available. There are
also alternative releases of OpenStack available. The ones available from Ubuntu 12.04 LTS
repositories are known as Essex and represent the latest stable release at the time of writing.

www.it-ebooks.info

http://www.it-ebooks.info/

Installing OpenStack Storage

84

Using an alternative release
Deviating from stable releases is appropriate when you are helping develop or debug
OpenStack or require functionality that is not available in the current release. To enable
different releases, you added different Personal Package Archives (PPAs) to your system.
To view the OpenStack PPAs, visit http://wiki.openstack.org/PPAs. To use them,
we first install a tool that allows us to easily add PPAs to our system:

sudo apt-get update

sudo apt-get -y install python-software-properties

To use a particular release PPA, we issue the following commands:

 f Milestones (periodic releases leading up to a stable release):
sudo add-apt-repository ppa:openstack-ppa/milestone

sudo apt-get update

 f Bleeding Edge (Master Development Branch):

sudo add-apt-repository ppa:openstack-ppa/bleeding-edge

sudo apt-get update

Once you have configured apt to look for an alternative place for packages, you can repeat
the preceding process for installing packages—if you are creating a new machine based on a
different package set—or simply type:

sudo apt-get upgrade

This will make apt look in the new package archive areas for later releases of packages
(which they will be as they are more recent revisions of code and development).

Configuring storage
Now that we have our Openstack Storage services installed, we can configure our extra disk,
which will form our object storage. As OpenStack Storage is designed to be highly scalable
and highly redundant, it is usually installed across multiple nodes. Our test environment will
consist of only one node, but OpenStack Storage still expects multiple destinations on our
storage to replicate its data to, so we need to configure this appropriately for our test setup.

We will end up with four directories on our OpenStack Storage server specified as
/srv/1, /srv/2, /srv/3, and /srv/4, which point to directories on our new disk.
The result is an OpenStack Storage setup that looks like it has four other OpenStack
Storage nodes to replicate data to.

Getting ready
To begin with, log in to our openstack2 virtual machine.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

85

How to do it...
To configure our OpenStack Storage host, carry out the following steps:

1. We first create a new partition on our extra disk. This extra disk is seen as /dev/sdb,
under our Linux installation.
sudo fdisk /dev/sdb

2. Go through fdisk and ensure a single partition has been created.

3. To get Linux to see this new partition without rebooting, run partprobe to reread the
disk layout.
sudo partprobe

4. Once completed, we can create our filesystem. For this, we will use the XFS
filesystem, as follows:
sudo mkfs.xfs -i size=1024 /dev/sdb1

5. We can now create the required mount point and set up fstab to allow us to mount
this new area, as follows:
sudo mkdir /mnt/sdb1

6. Then, edit /etc/fstab to add in the following contents:
/dev/sdb1 /mnt/sdb1 xfs
 noatime,nodiratime,nobarrier,logbufs=8 0 0

7. We can now mount this area, as follows:
sudo mount /dev/sdb1

8. Once done, we can create the required file structure, as follows:
sudo mkdir /mnt/sdb1/{1..4}

sudo chown swift:swift /mnt/sdb1/*

sudo ln -s /mnt/sdb1/{1..4} /srv

sudo mkdir -p /etc/swift/{object-server,container-
 server,account-server}

for S in {1..4}; do sudo mkdir -p /srv/${S}/node/sdb${S};
 done

sudo mkdir -p /var/run/swift

sudo chown -R swift:swift /etc/swift /srv/{1..4}/

9. To ensure OpenStack Storage can always start on boot, add the following commands
to /etc/rc.local, before the line exit 0:

mkdir -p /var/run/swift
chown swift:swift /var/run/swift

www.it-ebooks.info

http://www.it-ebooks.info/

Installing OpenStack Storage

86

How it works...
We first created a new partition on our extra disk and formatted this with the XFS filesystem.
XFS is very good at handling large objects and has the necessary extended attributes (xattr)
required for the objects in this filesystem.

Once created, we mounted this area, and then began to create the directory structure.
The commands to create the directories and required symbolic links included a lot of bash
shorthand, such as {1..4}. This shorthand essentially prints out 1 2 3 4 when expanded,
but repeats the preceding attached text when it does so. Take for example the following piece
of code:

mkdir /mnt/sdb1/{1..4}

It is the equivalent of:

mkdir /mnt/sdb1/1 /mnt/sdb1/2 /mnt/sdb1/3 /mnt/sdb1/4

The effect of that short piece of code is the following directory structure:

/etc/swift
 /object-server
 /container-server
 /account-server
/mnt/sdb1
 /1 -> /srv/1
 /2 -> /srv/2
 /3 -> /srv/3
 /4 -> /srv/4
/srv/1/node/sdb1
/srv/2/node/sdb2
/srv/3/node/sdb3
/srv/4/node/sdb4
/var/run/swift

What we have done is set up a filesystem that will see data replicated into the different device
directories to mimic the actions and features OpenStack Storage requires. In production,
these device directories would actually be physical servers and physical devices on the
servers and won't necessarily have this directory structure.

Configuring replication
As required by a highly redundant and scalable object storage system, replication is a key
requirement. The reason we went to great lengths to create multiple directories—named in a
particular way so as to mimic actual devices—is that we want to set up replication between
these "devices" using rsync.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

87

Rsync is responsible for performing the replication of the objects stored in our OpenStack
Storage environment.

Getting ready
To begin with, log in to our openstack2 server.

How to do it...
Configuring replication in OpenStack Storage means configuring the Rsync service. The
following steps set up synchronization modules configured to represent the different ports
that we will eventually configure our OpenStack Storage service to run on. As we're configuring
a single server, we use different paths and different ports to mimic the multiple servers that
would normally be involved.

1. We first create our /etc/rsyncd.conf file in its entirety, as follows:
uid = swift
gid = swift
log file = /var/log/rsyncd.log
pid file = /var/run/rsyncd.pid
address = 127.0.0.1

[account6012]
max connections = 25
path = /srv/1/node/
read only = false
lock file = /var/lock/account6012.lock

[account6022]
max connections = 25
path = /srv/2/node/
read only = false
lock file = /var/lock/account6022.lock

[account6032]
max connections = 25
path = /srv/3/node/
read only = false
lock file = /var/lock/account6032.lock

[account6042]
max connections = 25
path = /srv/4/node/
read only = false
lock file = /var/lock/account6042.lock

www.it-ebooks.info

http://www.it-ebooks.info/

Installing OpenStack Storage

88

[container6011]
max connections = 25
path = /srv/1/node/
read only = false
lock file = /var/lock/container6011.lock

[container6021]
max connections = 25
path = /srv/2/node/
read only = false
lock file = /var/lock/container6021.lock

[container6031]
max connections = 25
path = /srv/3/node/
read only = false
lock file = /var/lock/container6031.lock

[container6041]
max connections = 25
path = /srv/4/node/
read only = false
lock file = /var/lock/container6041.lock

[object6010]
max connections = 25
path = /srv/1/node/
read only = false
lock file = /var/lock/object6010.lock

[object6020]
max connections = 25
path = /srv/2/node/
read only = false
lock file = /var/lock/object6020.lock

[object6030]
max connections = 25
path = /srv/3/node/
read only = false
lock file = /var/lock/object6030.lock

[object6040]
max connections = 25
path = /srv/4/node/
read only = false
lock file = /var/lock/object6040.lock

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

89

2. Once complete, we enable rsync and start the service, as follows:

sudo sed -i 's/=false/=true/' /etc/default/rsync

sudo service rsync start

How it works...
The vast majority of this section was configuring rsyncd.conf appropriately. What we have
done is configure various rsync modules that become targets on our rsync server.

For example, the object6020 module would be accessible using the following command:

rsync localhost::object6020

It would have the contents of /srv/node/3/.

Configuring OpenStack Storage Service
Configuring our OpenStack Storage environment is quick and simple, as it involves just adding
in a uniquely generated random alpha numeric string to the /etc/swift/swift.conf file.
This random string will be included in all nodes as we scale out our environment, so keep
it safe.

Getting ready
To begin with, log in to our openstack2 server.

How to do it...
Configuring the main OpenStack Storage configuration file for our sandbox environment is
simply done with the following steps:

1. First, we generate our random string, as follows:
< /dev/urandom tr -dc A-Za-z0-9_ | head -c16; echo

2. We then create the /etc/swift/swift.conf, file adding in the following contents,
including our generated random string:

[swift-hash]
 # Random unique string used on all nodes
 swift_hash_path_suffix = QAxxUPkzb7lP29OJ

www.it-ebooks.info

http://www.it-ebooks.info/

Installing OpenStack Storage

90

How it works...
We first generated a random string by outputting characters from the /dev/urandom device.
We then added this string to our swift.conf file, as the swift_has_path_suffix
parameter. This random string is used as we scale out our OpenStack Storage
environment—when creating extra nodes we do not generate a new random string.

Configuring the OpenStack Storage
proxy server

Clients connect to OpenStack Storage via a proxy server. This allows us to scale out our
OpenStack Storage environment as needed, without affecting the frontend to which the
clients connect. Configuration of the proxy service is simply done by editing the
/etc/swift/proxy-server.conf file.

Getting ready
To begin with, log in to our openstack2 server.

How to do it...
To configure the OpenStack Storage proxy server, we simply create the file
/etc/swift/proxy-server.conf, with the following contents:

[DEFAULT]
bind_port = 8080
user = swift
log_facility = LOG_LOCAL1

[pipeline:main]
pipeline = healthcheck cache tempauth proxy-server

[app:proxy-server]
use = egg:swift#proxy
allow_account_management = true
account_autocreate = true

[filter:tempauth]
use = egg:swift#tempauth
user_admin_admin = admin .admin .reseller_admin
user_test_tester = testing .admin

[filter:healthcheck]
use = egg:swift#healthcheck

[filter:cache]
use = egg:swift#memcache

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

91

How it works...
The contents of the proxy-server.conf file define how the OpenStack Storage proxy
server is configured.

For our purposes, we will run our proxy on port 8080, as the user swift, and it will log to
syslog, using the log level of LOCAL1 (this allows us to filter against these messages).

We configure our swift proxy server healthcheck behavior to handle caching (by use of
memcached) and TempAuth (local authentication meaning our proxy server will handle
basic authentication).

The [filter:tempauth] section defines two users and roles in their own accounts—one
called admin (with the password admin) in the admin account and another called tester
(with the password testing) in the test account. The admin user has the admin and
reseller_admin roles. The tester user has admin privileges. The .admin role is a
local administrator role, whereas the .reseller_admin role has full access to the whole
OpenStack Storage environment. The format of the TempAuth user lines is as follows:

user_account_username = password {.role} {.role …} {endpoint_url}

For example, if we wanted another user in the tester account, called myUser, as a normal
user with the password myPassword, we would add the following line:

user_test_myUser = myPassword

The endpoint_URL option is useful when there is a requirement for a specific URL to be
returned that differs from the default. This is used in scenarios where the endpoint URL
comes back on an address that is inaccessible on the network or you want to present this
differently to the end user, to fit your network.

See also
 f There are more complex options and features described in /usr/share/doc/

swift-proxy/proxy-server.conf-sample.gz

 f A good overview of TempAuth can be found at
http://swiftstack.com/blog/2012/01/04/swift-tempauth/

Configuring Account Server
Account Server lists the available containers on our node. As we are creating a setup where
we have four virtual devices available under the one hood, they each have their own list of
available containers, but they run on different ports. These represent the rsync account
numbers seen previously, for example, port 6012 is represented by [account6012]
within rsync.

www.it-ebooks.info

http://www.it-ebooks.info/

Installing OpenStack Storage

92

Getting ready
To begin with, log in to our openstack2 server.

How to do it...
For this section, we're creating four different Account Server configuration files that differ only
in the port that the service will run on and the path on our single disk that corresponds to that
service on that particular port.

1. We begin by creating an initial Account Server configuration file for our first node.
Edit /etc/swift/account-server/1.conf with the following contents:
[DEFAULT]
devices = /srv/1/node
mount_check = false
bind_port = 6012
user = swift
log_facility = LOG_LOCAL2

[pipeline:main]
pipeline = account-server

[app:account-server]
use = egg:swift#account

[account-replicator]
vm_test_mode = yes

[account-auditor]

[account-reaper]

2. We then use this to create the remaining three virtual nodes, each with their
appropriate unique values as follows:

cd /etc/swift/account-server

sed -e "s/srv\/1/srv\/2/" -e "s/601/602/" -e
 "s/LOG_LOCAL2/LOG_LOCAL3/" 1.conf | sudo tee -a 2.conf

sed -e "s/srv\/1/srv\/3/" -e "s/601/603/" -e
 "s/LOG_LOCAL2/LOG_LOCAL4/" 1.conf | sudo tee -a 3.conf

sed -e "s/srv\/1/srv\/4/" -e "s/601/604/" -e
 "s/LOG_LOCAL2/LOG_LOCAL5/" 1.conf | sudo tee -a 4.conf

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

93

How it works...
What we have accomplished is to create the first Account Server device node, which we
named 1.conf, under the /etc/swift/swift-account directory. This defined our
Account Server for node 1, which will run on port 6012.

We then took this file and made the subsequent Account Servers run on their respective
ports, with a search and replace, using sed.

We ended up with four files, under our swift-account configuration directory, which
defined the following services:

account-server 1: Port 6012, device /srv/1/node, Log Level LOCAL2
account-server 2: Port 6022, device /srv/2/node, Log Level LOCAL3
account-server 3: Port 6032, device /srv/3/node, Log Level LOCAL4
account-server 4: Port 6042, device /srv/4/node, Log Level LOCAL5

Configuring Container Server
Container Servers contains Object Servers seen in our OpenStack Storage environment.
The configuration of this is similar to configuring Account Server.

Getting ready
To begin with, log in to our openstack2 server.

How to do it...
As with configuring the Account Server, we follow a similar procedure for Container Server,
creating the four different configuration files that correspond to a particular port and area
on our disk.

1. We begin by creating an initial Container Server configuration file for our first node.
Edit /etc/swift/container-server/1.conf with the following contents:
[DEFAULT]
devices = /srv/1/node
mount_check = false
bind_port = 6011
user = swift
log_facility = LOG_LOCAL2

[pipeline:main]
pipeline = container-server

www.it-ebooks.info

http://www.it-ebooks.info/

Installing OpenStack Storage

94

[app:container-server]
use = egg:swift#container

[account-replicator]
vm_test_mode = yes

[account-updater]

[account-auditor]

[account-sync]

2. We then use this to create the remaining three virtual nodes, each with their
appropriate unique values, as follows:

cd /etc/swift/container-server

sed -e "s/srv\/1/srv\/2/" -e "s/601/602/" -e
 "s/LOG_LOCAL2/LOG_LOCAL3/" 1.conf | sudo tee -a 2.conf

sed -e "s/srv\/1/srv\/3/" -e "s/601/603/" -e
 "s/LOG_LOCAL2/LOG_LOCAL4/" 1.conf | sudo tee -a 3.conf

sed -e "s/srv\/1/srv\/4/" -e "s/601/604/" -e
 "s/LOG_LOCAL2/LOG_LOCAL5/" 1.conf | sudo tee -a 4.conf

How it works...
What we have accomplished is to create the first Container Server node configuration file,
which we named 1.conf, under the /etc/swift/swift-container directory. This
defined our Container Server for node 1, which will run on port 6011.

We then took this file and made subsequent Container Servers run on their respective ports,
with a search and replace, using sed.

We ended up with four files, under our swift-container configuration directory, which
defined the following:

container-server 1: Port 6011, device /srv/1/node, Log Level LOCAL2
container-server 2: Port 6021, device /srv/2/node, Log Level LOCAL3
container-server 3: Port 6031, device /srv/3/node, Log Level LOCAL4
container-server 4: Port 6041, device /srv/4/node, Log Level LOCAL5

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

95

Configuring Object Server
Object Server contains the actual objects seen in our OpenStack Storage environment and the
configuration of this is similar to configuring the Account Server and Container Server.

Getting ready
To begin with, log in to our openstack2 server.

How to do it...
As with configuring the Container Server, we follow a similar procedure for Object Server, creating
the four different configuration files that correspond to a particular port and area on our disk.

1. We begin by creating an initial Object Server configuration file for our first node.
Edit /etc/swift/object-server/1.conf with the following contents:
[DEFAULT]
devices = /srv/1/node
mount_check = false
bind_port = 6010
user = swift
log_facility = LOG_LOCAL2

[pipeline:main]
pipeline = object-server

[app:object-server]
use = egg:swift#object

[object-replicator]
vm_test_mode = yes

[object-updater]

[object-auditor]

2. We then use this to create the remaining three virtual nodes, each with their
appropriate unique values, as follows:

cd /etc/swift/object-server
sed -e "s/srv\/1/srv\/2/" -e "s/601/602/" -e
 "s/LOG_LOCAL2/LOG_LOCAL3/" 1.conf | sudo tee -a 2.conf

sed -e "s/srv\/1/srv\/3/" -e "s/601/603/" -e
 "s/LOG_LOCAL2/LOG_LOCAL4/" 1.conf | sudo tee -a 3.conf

sed -e "s/srv\/1/srv\/4/" -e "s/601/604/" -e
 "s/LOG_LOCAL2/LOG_LOCAL5/" 1.conf | sudo tee -a 4.conf

www.it-ebooks.info

http://www.it-ebooks.info/

Installing OpenStack Storage

96

How it works...
What we have accomplished is to create the first Object Server node configuration file, which
we named 1.conf, under the /etc/swift/swift-container directory. This defined our
Object Server for node 1, which will run on port 6010.

We then took this file and made subsequent Object Servers run on their respective ports, with
a search and replace, using sed.

We end up with four files, under our swift-object configuration directory, which defined
the following:

object-server 1: Port 6010, device /srv/1/node, Log Level LOCAL2
object-server 2: Port 6020, device /srv/2/node, Log Level LOCAL3
object-server 3: Port 6030, device /srv/3/node, Log Level LOCAL4
object-server 4: Port 6040, device /srv/4/node, Log Level LOCAL5

The three preceding sections have seen us configure Account
Servers, Object Servers, and Container Servers, each running on
their respective ports. These sections all tie up to the modules
configured in our rsyncd.conf file.

Making the Object, Account, and
Container rings

The final step is to create the Object ring, Account ring, and Container ring that each of our
virtual nodes exist in.

Getting ready
To begin with, log in to our openstack2 server.

How to do it...
The OpenStack Storage ring keeps track of where our data exists in our cluster. There are
three rings that OpenStack Storage understands, and they are the Account, Container, and
Object rings. To facilitate quick rebuilding of the rings in our cluster, we will create a script
that performs the necessary steps.

1. The most convenient way to create the rings for our OpenStack Storage environment
is to create a script. Create /usr/local/bin/remakerings:
#!/bin/bash

cd /etc/swift

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

97

rm -f *.builder *.ring.gz backups/*.builder backups/*.ring.gz
Object Ring
swift-ring-builder object.builder create 18 3 1
swift-ring-builder object.builder add z1-127.0.0.1:6010/sdb1 1
swift-ring-builder object.builder add z2-127.0.0.1:6020/sdb2 1
swift-ring-builder object.builder add z3-127.0.0.1:6030/sdb3 1
swift-ring-builder object.builder add z4-127.0.0.1:6040/sdb4 1
swift-ring-builder object.builder rebalance

Container Ring
swift-ring-builder container.builder create 18 3 1
swift-ring-builder container.builder add z1-127.0.0.1:6011/sdb1 1
swift-ring-builder container.builder add z2-127.0.0.1:6021/sdb2 1
swift-ring-builder container.builder add z3-127.0.0.1:6031/sdb3 1
swift-ring-builder container.builder add z4-127.0.0.1:6041/sdb4 1
swift-ring-builder container.builder rebalance

Account Ring
swift-ring-builder account.builder create 18 3 1
swift-ring-builder account.builder add z1-127.0.0.1:6012/sdb1 1
swift-ring-builder account.builder add z2-127.0.0.1:6022/sdb2 1
swift-ring-builder account.builder add z3-127.0.0.1:6032/sdb3 1
swift-ring-builder account.builder add z4-127.0.0.1:6042/sdb4 1
swift-ring-builder account.builder rebalance

2. Now we can run the script as follows:
sudo chmod +x /usr/local/bin/remakerings

sudo /usr/local/bin/remakerings

3. You will see output similar to the following:

Device z1-127.0.0.1:6010/sdb1_"" with 1.0 weight got id 0
Device z2-127.0.0.1:6020/sdb2_"" with 1.0 weight got id 1
Device z3-127.0.0.1:6030/sdb3_"" with 1.0 weight got id 2
Device z4-127.0.0.1:6040/sdb4_"" with 1.0 weight got id 3
Reassigned 262144 (100.00%) partitions. Balance is now
 0.00.
Device z1-127.0.0.1:6011/sdb1_"" with 1.0 weight got id 0
Device z2-127.0.0.1:6021/sdb2_"" with 1.0 weight got id 1
Device z3-127.0.0.1:6031/sdb3_"" with 1.0 weight got id 2
Device z4-127.0.0.1:6041/sdb4_"" with 1.0 weight got id 3
Reassigned 262144 (100.00%) partitions. Balance is now
 0.00.
Device z1-127.0.0.1:6012/sdb1_"" with 1.0 weight got id 0
Device z2-127.0.0.1:6022/sdb2_"" with 1.0 weight got id 1
Device z3-127.0.0.1:6032/sdb3_"" with 1.0 weight got id 2
Device z4-127.0.0.1:6042/sdb4_"" with 1.0 weight got id 3
Reassigned 262144 (100.00%) partitions. Balance is now
 0.00.

www.it-ebooks.info

http://www.it-ebooks.info/

Installing OpenStack Storage

98

How it works...
Creation of the rings is done using the swift-ring-builder command and involves the
following steps, repeated for each ring type (Object, Container, and Account):

1. Creating the ring (of type Object, Container, or Account).

2. Assigning a device to the ring.

3. Rebalancing the ring.

Creating the ring
To create the ring, we use the following syntax:

swift-ring-builder builder_file create part_power replicas
 min_part_hours

Creation of the ring specifies a builder file to create three parameters: part_power,
replicas, and min_part_hours. This means 2^part_power (18 is used in this instance)
is the number of partitions to create, replicas are the number of replicas (3 is used in this
case) of the data within the ring, and min_part_hours (1 is specified in this case) is the
time in hours before a specific partition can be moved in succession.

Assigning a device to the ring
To assign a device to a ring, we use the following syntax:

swift-ring-builder builder_file add zzone-ip:port/device_name weight

Adding a node to the ring specifies the same builder_file created in the first step.
We then specify a zone (for example, 1, prefixed with z) that the device will be in, ip
(127.0.0.1) is the IP address of the server that the device is in, port (for example, 6010)
is the port number that the server is running on, and device_name is the name of the device
on the server (for example, sdb1). The weight is a float weight that determines how many
partitions are put on the device, relative to the rest of the devices in the cluster.

Rebalancing the ring
To rebalance the ring, we use the following syntax within the /etc/swift directory:

swift-ring-builder builder_file rebalance

This command will distribute the partitions across the drives in the ring.

The previous process is run for each of the rings: object, container, and account.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

99

Stopping and starting OpenStack Storage
Now that we have configured our OpenStack Storage installation, it's time to start our
services, so that they're running on our openstack2 virtual machine, ready for us to use
for storing objects and images in our OpenStack environment.

Getting ready
To begin with, log in to our openstack2 server.

How to do it...
Controlling OpenStack Storage services is achieved using SysV Init scripts, utilizing the
service command.

Since the OpenStack Storage services may have started following installation of the packages,
we will restart the needed services to ensure the services have the correct configuration and
are running as expected.

sudo service swift-account restart

sudo service swift-object restart

sudo service swift-container restart

sudo service swift-proxy restart

How it works...
The OpenStack Storage services are simply started, stopped, and restarted, using the
following syntax:

service swift-account { start | stop | restart }

service swift-object { start | stop | restart }

service swift-container { start | stop | restart }

service swift-proxy { start | stop | restart }

Testing OpenStack Storage
We are now ready to test our installation of OpenStack Storage, and we can achieve this in a
couple of ways—by using curl and using the swift command-line utility.

www.it-ebooks.info

http://www.it-ebooks.info/

Installing OpenStack Storage

100

Getting ready
For this section, we will log in to our swift1 host.

How to do it...
As OpenStack Storage is a web service, we will use curl to do some basic tests to ensure our
services are running as they should. We will perform some basic authentication and connect
to our web service using these details.

Using curl to test OpenStack Storage
1. We first authenticate to our swift proxy server running on port 8080, on our host.

curl -v -H 'X-Storage-User: test:tester' -H 'X-Storage-
 Pass: testing' http://127.0.0.1:8080/auth/v1.0

2. We should see output similar to the following, where we should get a HTTP 200 OK
message back when successful:
* About to connect() to 127.0.0.1 port 8080 (#0)
* Trying 127.0.0.1... connected
* Connected to 127.0.0.1 (127.0.0.1) port 8080 (#0)
> GET /auth/v1.0 HTTP/1.1
> User-Agent: curl/7.21.6 (x86_64-pc-linux-gnu) libcurl/7.21.6
OpenSSL/1.0.0e
 zlib/1.2.3.4 libidn/1.22 librtmp/2.3
> Host: 127.0.0.1:8080
> Accept: */*
> X-Storage-User: test:tester
> X-Storage-Pass: testing
>
< HTTP/1.1 200 OK
< X-Storage-Url: http://127.0.0.1:8080/v1/AUTH_test
< X-Storage-Token: AUTH_tkea3bbcb73a524cca8b244d0f0b10b824
< X-Auth-Token: AUTH_tkea3bbcb73a524cca8b244d0f0b10b824
< Content-Length: 0
< Date: Mon, 02 Jan 2012 20:28:57 GMT
<
* Connection #0 to host 127.0.0.1 left intact
* Closing connection #0

3. We take the X-Storage-Url and X-Auth-Token reply headers and send this
back, using curl again:
curl -v -H 'X-Auth-Token:
 AUTH_tkea3bbcb73a524cca8b244d0f0b10b824'
 http://127.0.0.1:8080/v1/AUTH_test

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

101

4. We should now get output similar to the following, on acceptance (where we get a
HTTP 204 No Content, which says we have successfully connected but returned no
content as we have nothing stored there yet):

* About to connect() to 127.0.0.1 port 8080 (#0)
* Trying 127.0.0.1... connected
* Connected to 127.0.0.1 (127.0.0.1) port 8080 (#0)
> GET /v1/AUTH_test HTTP/1.1
> User-Agent: curl/7.21.6 (x86_64-pc-linux-gnu) libcurl/7.21.6
OpenSSL/1.0.0e
 zlib/1.2.3.4 libidn/1.22 librtmp/2.3
> Host: 127.0.0.1:8080
> Accept: */*
> X-Auth-Token: AUTH_tkea3bbcb73a524cca8b244d0f0b10b824
>
< HTTP/1.1 204 No Content
< X-Account-Object-Count: 0
< X-Account-Bytes-Used: 0
< X-Account-Container-Count: 0
< Accept-Ranges: bytes
< Content-Length: 0
< Date: Mon, 02 Jan 2012 20:30:04 GMT
<
* Connection #0 to host 127.0.0.1 left intact
* Closing connection #0

Using a swift command to test OpenStack Storage
Rather than seeing the web service output, we can use the command-line tool swift
(previously known as st) to ensure we have a working setup. Note the output matches the
reply headers seen when queried using curl.

swift -A http://127.0.0.1:8080/auth/v1.0 -U test:tester -K testing
 stat

You should see the following output:

Account: AUTH_test
Containers: 0
Objects: 0
Bytes: 0
Accept-Ranges: bytes

www.it-ebooks.info

http://www.it-ebooks.info/

Installing OpenStack Storage

102

How it works...
OpenStack Storage is a web service so we can use traditional command-line web clients to
troubleshoot and verify our OpenStack Storage installation. This becomes very useful for
debugging OpenStack Storage at this low level, just as you would debug any web service.

Using curl allows us to get a glimpse of how authentication and service discovery works.
We first send through our authentication details (that we specified in our /etc/swift/
proxy-server.conf file, as we're using the proxy server to provide our authentication)
and in return, we're presented with some reply headers that we can then use to find the
objects we have access to via the URL returned to us.

The swift command wraps this process into a single line, but the result is the same. Behind
the scenes, the authentication returns a URL after successful authentication, and then lists
the statistics of that container.

Setting up SSL access
Setting up SSL access provides secure access between the client and our OpenStack Storage
environment in exactly the same way SSL provides secure access to any other web service. To
do this, we configure our proxy server with SSL certificates.

Getting ready
To begin with, log in to our openstack2 server.

How to do it...
Configuration of OpenStack Storage to secure communication between the client and the
proxy server is done as follows:

1. In order to provide SSL access to our proxy server, we first create the certificates,
as follows:
cd /etc/swift

sudo openssl req -new -x509 -nodes -out cert.crt -keyout
 cert.key

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

103

2. We need to answer the following questions that the certificate process asks us:

3. Once created, we configure our proxy server to use the certificate and key by editing
the /etc/swift/proxy-server.conf file:
bind_port = 443
cert_file = /etc/swift/cert.crt
key_file = /etc/swift/cert.key

4. With this in place, we can restart the proxy server, using the swift-init command,
to pick up the change:

sudo swift-init proxy-server restart

How it works...
Configuring OpenStack Storage to use SSL involves configuring the proxy server to use SSL.
We first configure a self-signed certificate using the openssl command, which asks for
various fields to be filled in. An important field is the Common Name field. Put in the fully
qualified domain name (FQDN) hostname or IP address that you would use to connect to
the Swift server.

Once that has been done, we specify the port that we want our proxy server to listen on. As we
are configuring an SSL HTTPS connection, we will use the standard TCP port 443 that HTTPS
defaults to. We also specify the certificate and key that we created in the first step, so when a
request is made, this information is presented to the end user to allow secure data transfer.

With this in place, we then restart our proxy server to listen on port 443.

www.it-ebooks.info

http://www.it-ebooks.info/

Installing OpenStack Storage

104

Configuring OpenStack Storage with
OpenStack Identity Service

The OpenStack Storage service configured in the previous sections uses the inbuilt TempAuth
mechanism to manage accounts. This is analogous to the deprecated_auth mechanism we
can configure with the OpenStack Compute service. This section shows you how to move from
TempAuth to OpenStack Identity Service to manage accounts.

Getting ready
For this section, we will log in to our openstack2 host for configuration of OpenStack Storage
Service as well as to a client that has access to the keystone client, to manage OpenStack
Identity Service.

How to do it...
Configuring OpenStack Storage to use OpenStack Identity Service is carried out as follows:

1. We first use the keystone client to configure the required endpoints and accounts
under OpenStack Identity Service, as follows:
Set up environment
export ENDPOINT=172.16.0.1
export SERVICE_TOKEN=ADMIN
export SERVICE_ENDPOINT=http://${ENDPOINT}:35357/v2.0

Swift Proxy Address
export SWIFT_PROXY_SERVER=172.16.0.2

Configure the OpenStack Storage Endpoint
keystone --token $SERVICE_TOKEN --endpoint $SERVICE_ENDPOINT
service-create --name swift --type object-store --description
'OpenStack Storage Service'

Service Endpoint URLs
ID=$(keystone service-list | awk '/\ swift\ / {print $2}')

Note we're using SSL
PUBLIC_URL="https://$SWIFT_PROXY_SERVER:443/v1/AUTH_\$(tenant_id)
s"
ADMIN_URL="https://$SWIFT_PROXY_SERVER:443/v1"
INTERNAL_URL=$PUBLIC_URL

keystone endpoint-create --region RegionOne --service_id
 $ID --publicurl $PUBLIC_URL --adminurl $ADMIN_URL
 --internalurl $INTERNAL_URL

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

105

2. With the endpoints configured to point to our OpenStack Storage server, we can now
set up the swift user, so our proxy server can authenticate with the OpenStack
Identity server.
Get the service tenant ID
SERVICE_TENANT_ID=$(keystone tenant-list | awk '/\ service\
 / {print $2}')

Create the swift user
keystone user-create --name swift --pass swift --tenant_id
 $SERVICE_TENANT_ID --email swift@localhost
 --enabled true

Get the swift user id
USER_ID=$(keystone user-list | awk '/\ swift\ /
 {print $2}')

Get the admin role id
ROLE_ID=$(keystone role-list | awk '/\ admin\ /
 {print $2}')

Assign the swift user admin role in service tenant
keystone user-role-add --user $USER_ID --role $ROLE_ID
 --tenant_id $SERVICE_TENANT_ID

3. On the OpenStack Storage server (openstack2), we now install the Keystone Python
libraries, so that OpenStack Identity Service can be used. This is done as follows:
sudo apt-get update

sudo apt-get install python-keystone

4. We can now edit the proxy server configuration, /etc/swift/proxy-server.
conf, to utilize OpenStack Identity Server, as follows:
[DEFAULT]
bind_port = 443
cert_file = /etc/swift/cert.crt
key_file = /etc/swift/cert.key
user = swift
log_facility = LOG_LOCAL1

[pipeline:main]
pipeline = catch_errors healthcheck cache authtoken keystone
proxy-server

[app:proxy-server]
use = egg:swift#proxy
account_autocreate = true

www.it-ebooks.info

http://www.it-ebooks.info/

Installing OpenStack Storage

106

[filter:healthcheck]
use = egg:swift#healthcheck

[filter:cache]
use = egg:swift#memcache

[filter:keystone]
paste.filter_factory = keystone.middleware.swift_auth:
filter_factory
operator_roles = Member,admin

[filter:authtoken]
paste.filter_factory = keystone.middleware.auth_token:
filter_factory
service_port = 5000
service_host = 172.16.0.1
auth_port = 35357
auth_host = 172.16.0.1
auth_protocol = http
auth_token = ADMIN
admin_token = ADMIN
admin_tenant_name = service
admin_user = swift
admin_password = swift
cache = swift.cache

[filter:catch_errors]
use = egg:swift#catch_errors

[filter:swift3]
use = egg:swift#swift3

5. We pick up these changes by restarting the proxy server service, as follows:

sudo swift-init proxy-server restart

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

107

How it works...
Configuring OpenStack Storage to use OpenStack Identity Service involves altering the
pipeline so that keystone is used as the authentication.

After setting the relevant endpoint within the OpenStack Identity Service to be an SSL
endpoint, we can configure our OpenStack Storage proxy server.

To do this, we first define the pipeline to include keystone and authtoken,
and then configure these further down the file in the [filter:keystone] and
[filter:authtoken] sections. In the [filter:keystone] section, we set someone
with admin and Member roles assigned to be an operator of our OpenStack Storage. This
allows those of our users who have one of those roles to have write permissions in our
OpenStack Storage environment.

In the [filter:authtoken] section, we tell our proxy server where to find the OpenStack
Identity Service. Here, we also set the service username and password for this service that we
have configured within OpenStack Identity Service.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

5
Using OpenStack

Storage
In this chapter, we will cover:

 f Installing the swift client tool

 f Creating containers

 f Uploading objects

 f Uploading large objects

 f Listing containers and objects

 f Downloading objects

 f Deleting containers and objects

 f Using OpenStack Storage ACLs

Introduction
Now that we have an OpenStack Storage environment running, we can use it to store our
files. To do this, we can use a tool provided, named swift. This allows us to operate our
OpenStack Storage environment by allowing us to create containers, upload files, retrieve
them, and set required permissions on them, as appropriate.

Installing the swift client tool
In order to operate our OpenStack Storage environment, we need to install an appropriate
tool on our client. Swift ships with the swift tool, which allows us to upload, download, and
modify files in our OpenStack Storage environment.

www.it-ebooks.info

http://www.it-ebooks.info/

Using OpenStack Storage

110

Getting ready
To begin with, ensure you are logged into your Ubuntu client, where we can install the
swift client.

We will be using OpenStack Storage, authenticating against the OpenStack Identity
Service, Keystone.

How to do it...
Installation of the swift client can be done on any appropriate machine on the network;
it can conveniently be downloaded from the Ubuntu repositories using the familiar
apt-get utility.

1. Installation of the swift client is done by installing the swift package as well
as the python libraries for the OpenStack Identity Service, Keystone. We do this
as follows:
sudo apt-get update

sudo apt-get -y swift python-keystone

2. The preceding command will download the required package and a number of
supporting python libraries. No further configuration is required. To test that you
have successfully installed swift and can connect to your OpenStack Storage
server, issue the following command:
swift -V 2.0 -A http://172.16.0.1:5000/v2.0/ -U cookbook:demo -K
openstack stat

3. This will bring back statistics about our OpenStack Storage environment to which our
demo user has access.

How it works…
The swift client package is easily installed under Ubuntu and requires no further
configuration after downloading, as all parameters needed to communicate with OpenStack
Storage using the command line are installed.

When confirming that OpenStack Storage uses the
OpenStack Identity Service authentication, you configure
your client to communicate to OpenStack Identity Server,
not OpenStack Storage Proxy Server.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

111

Creating containers
A container can be thought of as a root folder under OpenStack Storage. They allow for
objects to be stored within them. Under S3, they are known as buckets. Creating objects
and containers can be achieved in a number of ways. A simple way is by using the swift
client tool. We run this client tool against OpenStack Identity Service, which in turn has been
configured to communicate to our OpenStack Storage proxy server and allows us to create,
delete, and modify containers and objects in our OpenStack Storage environment.

Getting ready
Log in to a computer or a server that has the swift client package installed.

How to do it...
Carry out the following steps to create a container under OpenStack Storage:

1. To create a container named test, under our OpenStack Storage server, using the
swift tool, we do the following:
swift -V 2.0 -A http://172.16.0.1:5000/v2.0/ -U cookbook:demo -K
openstack post test

2. To verify the creation of our container, we can list the containers in our OpenStack
Storage environment, as follows:

swift -V 2.0 -A http://172.16.0.1:5000/v2.0/ -U demo:cookbook -K
openstack list

This will simply list the containers in our OpenStack Storage environment.

How it works...
Creation of containers using the supplied swift tool is very simple. The syntax is as follows:

swift -V 2.0 -A http://keystone_server:5000/v2.0 -U tenant:user -K
password post container

This authenticates our user through OpenStack Identity Service using Version 2.0
authentication, which in turn connects to the OpenStack Storage endpoint configured for this
tenant and executes the required command to create the container.

www.it-ebooks.info

http://www.it-ebooks.info/

Using OpenStack Storage

112

Uploading objects
Objects are the files or directories that are stored within a container. Uploading objects can
be achieved in a number of ways. A simple way is by using the swift client tool. We run
this client tool against our OpenStack Identity Service, which in turn has been configured
to communicate to our OpenStack Storage proxy server and allow us to create, delete, and
modify containers and objects in our OpenStack Storage environment.

Getting ready
Log in to a computer or server that has the swift client package installed.

How to do it...
Carry out the following steps to upload objects into our OpenStack Storage environment:

Uploading objects

1. Create a 500 MB file under /tmp as an example file to upload, as follows:
dd if=/dev/zero of=/tmp/example-500Mb bs=1M count=500

2. We can upload this file to our OpenStack Storage account using the following
command:

swift -V 2.0 -A http://172.16.0.1:5000/v2.0/ -U cookbook:demo -K
openstack upload test /tmp/example-500Mb

When using OpenStack Storage, objects uploaded will be stored with
the full path of that object under our container. Although the objects
appear to be a regular file system, with a notion of a path structure,
OpenStack Storage is not a regular filesystem.

Uploading directories

Create a directory and two files to upload to our OpenStack Storage environment, as follows:

mkdir /tmp/test

dd if=/dev/zero of=/tmp/test/test1 bs=1M count=20

dd if=/dev/zero of=/tmp/test/test2 bs=1M count=20

To upload directories and their contents, we issue the same command, but just specify the
directory. The files within the directory are recursively uploaded. We do this as follows:

swift -V 2.0 -A http://172.16.0.1:5000/v2.0/ -U cookbook:demo -K
openstack upload test /tmp/test

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

113

Uploading multiple objects

We are able to upload a number of objects at once. To do this, we simply specify each of them
on our command line. To upload our test1 and test2 files, we issue the following command:

swift -V 2.0 -A http://172.16.0.1:5000/v2.0/ -U cookbook:demo -K
openstack upload test /tmp/test/test1 /tmp/test/test2

How it works...
Uploading files to our OpenStack Storage environment is simple to achieve with the swift
client tool. We can upload individual files or complete directories. The syntax is as follows:

swift -V 2.0 -A http://keystone_server:5000/v2.0 -U tenant:user -K
password upload container file|directory {file|directory … }

Note that when uploading files, the objects that are created are of the
form that we specify to the swift client, including the full paths. For
example, uploading /tmp/example-500Mb uploads that object as
tmp/example-500Mb. This is because OpenStack Storage is not a
traditional tree-based hierarchical file system that our computers and
desktops usually employ, where paths are delimited by a single slash
(/ or \). OpenStack Storage consists of a flat set of objects that exist
in containers where that slash forms the object name itself.

Uploading large objects
Individual objects up to 5 GB in size can be uploaded to OpenStack Storage. However, by
splitting the objects into segments, the download size of a single object is virtually unlimited.
Segments of the larger object are uploaded and a special manifest file is created that, when
downloaded, sends all the segments concatenated as a single object. By splitting objects into
smaller chunks, you also gain efficiency by allowing parallel uploads.

Getting ready
Log in to a computer or server that has the swift client package installed.

www.it-ebooks.info

http://www.it-ebooks.info/

Using OpenStack Storage

114

How to do it...
Carry out the following steps to upload large objects, split into smaller segments:

Uploading objects

1. We will first start by creating a 1 GB file under /tmp as an example file to upload. We
do this as follows:
dd if=/dev/zero of=/tmp/example-1Gb bs=1M count=1024

2. Rather than upload this file as a single object, we will utilize segmenting to split this
into smaller chunks, in this case, 100 MB segments. To do this, we specify the size of
the segments with the -s option, as follows:

swift -V 2.0 -A http://172.16.0.1:5000/v2.0/ -U cookbook:demo -K
openstack upload test -S 102400000 /tmp/example-1Gb

You will see output similar to the following, showing the status of each upload:

How it works...
OpenStack Storage is very good at storing and retrieving large objects. To efficiently do this
in our OpenStack Storage environment, we have the ability to split large objects into smaller
objects with OpenStack Storage, maintaining this relationship between the segments and the
objects that appear as a single file. This allows us to upload large objects in parallel, rather
than stream a single large file. To achieve this, we use the following syntax:

swift -V 2.0 -A http://keystone_server:5000/v2.0 -U tenant:user -K
password upload container -S bytes large_file

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

115

Now, when we list our containers under our account, we have an extra container, named
test_segments created, holding the actual segmented data fragments for our file. Our
test container holds the view that our large object is a single object. Behind the scenes,
the metadata within this single object will pull back the individual objects from the
test_segments container, to reconstruct the large object.

swift -V 2.0 -A http://172.16.0.1:5000/v2.0/ -U cookbook:demo -K
openstack list

When the preceding command is executed, we get the following output:

test
test_segments

Now, execute the following command:

swift -V 2.0 -A http://172.16.0.1:5000/v2.0/ -U cookbook:demo -K
openstack list test

The following output is generated:

tmp/example-1Gb

Execute:

swift -V 2.0 -A http://172.16.0.1:5000/v2.0/ -U cookbook:demo -K
openstack list test_segments

The following output is generated:

www.it-ebooks.info

http://www.it-ebooks.info/

Using OpenStack Storage

116

Listing containers and objects
The swift client tool allows you to easily list containers and objects within your OpenStack
Storage account.

Getting ready
Log in to a computer or server that has the swift client package installed.

How to do it...
Carry out the following to list objects within the OpenStack Storage environment:

Listing all objects in a container

In the preceding recipes, we uploaded a small number of files. To simply list the objects within
our test container, we issue the following command:

swift -V 2.0 -A http://172.16.0.1:5000/v2.0/ -U cookbook:demo -K
openstack list test

This will show output similar to the following:

Listing specific object paths within a container

To list just the files within the tmp/test path, we specify this with the -p parameter, as follows:

swift -V 2.0 -A http://172.16.0.1:5000/v2.0/ -U cookbook:demo -K
openstack list -p tmp/test test

This will list our two files, as follows:

tmp/test/test1
tmp/test/test2

We can put partial matches in the -p parameter too. For example, to list all files starting with
tmp/ex we issue the following command:

swift -V 2.0 -A http://172.16.0.1:5000/v2.0/ -U cookbook:demo -K
openstack list -p tmp/ex test

This will list files that match that string:

tmp/example-500Mb

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

117

How it works...
The tool swift is a basic but versatile utility that allows us to do many of the things we want
to do with files. Listing them in a way that suits the user is also possible. To simply list the
contents of our container, the syntax is as follows:

swift -V 2.0 -A http://keystone_server:5000/v2.0 -U tenant:user -K
password list container

To list a file in a particular path within the container, we add in the -p parameter to the syntax:

swift -V 2.0 -A http://keystone_server:5000/v2.0 -U tenant:user -K
password list -p path container

Downloading objects
Now that we have a usable OpenStack Storage environment with containers and objects,
there comes a time when we want to retrieve the objects. The swift client tool allows us
to do this.

Getting ready
Log in to a computer or server that has the swift client package installed.

How to do it...
Carry out the following to download objects from our OpenStack Storage environment:

Downloading objects

To download the object tmp/test/test1, we issue the following command:

swift -V 2.0 -A http://172.16.0.1:5000/v2.0/ -U cookbook:demo -K
openstack download test tmp/test/test1

This downloads the object to our file system. As we downloaded a file with the full path, this
directory structure is preserved, so we end up with a new directory structure of tmp/test
with a file in it called test1.

Downloading objects with the -o parameter

To download the file without preserving the file structure, or to simply rename it to something
else, we specify the -o parameter, as follows:

swift -V 2.0 -A http://172.16.0.1:5000/v2.0/ -U cookbook:demo -K
openstack download test tmp/test/test1 -o test1

www.it-ebooks.info

http://www.it-ebooks.info/

Using OpenStack Storage

118

Downloading all objects from a container

We are also able to download complete containers to our local filesystem. To do this, we
simply specify the container we want to download, as follows:

swift -V 2.0 -A http://172.16.0.1:5000/v2.0/ -U cookbook:demo -K
openstack download test

This will download all objects found under the test container.

Downloading all objects from our OpenStack Storage account

We can download all objects that reside under our OpenStack Storage account. If we have
multiple containers, all objects from all containers will be downloaded. We do this with the
--all parameter, as follows:

swift -V 2.0 -A http://172.16.0.1:5000/v2.0/ -U cookbook:demo -K
openstack download --all

This will download all objects with full paths preceded by the container name, for example:

How it works...
The swift client is a basic but versatile tool that allows us to do many of the things we want
to do with files. Downloading objects and containers is achieved using the following syntax:

swift -V 2.0 -A http://keystone_server:5000/v2.0 -U tenant:user -K
password download container {object … }

To download all objects from our account (for example, from all containers), we specify the
following syntax:

swift -V 2.0 -A http://keystone_server:5000/v2.0 -U tenant:user -K
password download --all

Deleting containers and objects
The swift client tool allows us to directly delete containers and objects within our OpenStack
Storage environment.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

119

Getting ready
Log in to a computer or server that has the swift client package installed.

How to do it...
Carry out the following to delete objects in our OpenStack Storage environment:

Deleting objects

To delete the object tmp/test/test1, we issue the following:

swift -V 2.0 -A http://172.16.0.1:5000/v2.0/ -U cookbook:demo -K
openstack delete test tmp/test/test1

This deletes the object tmp/test/test1 from the container test.

Deleting multiple objects

To delete the objects tmp/test/test2 and tmp/example-500Mb, we issue the
following command:

swift -V 2.0 -A http://172.16.0.1:5000/v2.0/ -U cookbook:demo -K
openstack delete test tmp/test/test2 tmp/example-500Mb

This deletes the objects tmp/test/test2 and tmp/example-500Mb from the
container test.

Deleting containers

To delete our test container we issue the following command:

swift -V 2.0 -A http://172.16.0.1:5000/v2.0/ -U cookbook:demo -K
openstack delete test

This will delete the container and any objects under this container.

Deleting everything from our account

To delete all containers and objects in our account, we issue the following command:

swift -V 2.0 -A http://172.16.0.1:5000/v2.0/ -U cookbook:demo -K
openstack delete --all

This will delete all containers and any objects under these containers.

www.it-ebooks.info

http://www.it-ebooks.info/

Using OpenStack Storage

120

How it works...
The swift client is a basic but versatile tool that allows us to do many of the things we want
to do with files. Deleting objects and containers is achieved using the following syntax:

swift -V 2.0 -A http://keystone_server:5000/v2.0 -U tenant:user -K
password delete container {object … }

To download all objects from our account (for example, from all containers), we specify the
following syntax:

swift -V 2.0 -A http://keystone_server:5000/v2.0 -U tenant:user -K
password delete –all

Using OpenStack Storage ACLs
ACLs allow us to have greater control over individual objects and containers without requiring
full read/write access to a particular container.

Getting ready
Log in to a computer that has the keystone and swift clients available.

How to do it...
Carry out the following steps:

We will first create an account in our OpenStack Identity Server that is only a Member in the
cookbook tenant. We will call this user, user.

export ENDPOINT=172.16.0.1

export SERVICE_TOKEN=ADMIN

export SERVICE_ENDPOINT=http://${ENDPOINT}:35357/v2.0

First get TENANT_ID related to our 'cookbook' tenant

TENANT_ID=$(tenant-list | awk ' / cookbook / {print $2}')

We then create the user specifying the TENANT_ID

keystone user-create --name user --tenant_id $TENANT_ID --pass openstack
--email user@localhost --enabled true

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

121

We get this new user's ID

USER_ID=$(keystone user-list | awk ' / user / {print $2}')

We get the ID of the 'Member' role

ROLE_ID=$(keystone role-list | awk ' / Member / {print $2}')

Finally add the user to the 'Member' role in cookbook

keystone --token 999888777666 --endpoint http://172.16.0.1:35357/v2.0/
user-role-add --user $USER_ID --role $ROLE_ID --tenant_id $TENANT_ID

1. With our new user created, we will now create a container using a user that has
admin privileges (and therefore a container that our new user initially doesn't have
access to), as follows:
swift -V 2.0 -A http://172.16.0.1:5000/v2.0/ -U cookbook:demo -K
openstack post testACL

2. We will try to upload a file to this container using our new user, as follows:
swift -V 2.0 -A http://172.16.0.1:5000/v2.0/ -U cookbook:user -K
openstack upload testACL /tmp/test/test1

This brings back an HTTP 403 Forbidden message similar to the following:

Object HEAD failed: https://172.16.0.2:443/v1/AUTH_53d87d9b6679490
4aa2c84c17274392b/testACL/tmp/test/test1 403 Forbidden

3. We will now give write access to the testACL container for our user by allowing them
access to the Member role.
swift -V 2.0 -A http://172.16.0.1:5000/v2.0/ -U cookbook:demo -K
openstack post testACL -w Member -r Member

4. When we repeat the upload of the file, it now succeeds:
swift -V 2.0 -A http://172.16.0.1:5000/v2.0/ -U cookbook:user -K
openstack upload testACL /tmp/test/test1

www.it-ebooks.info

http://www.it-ebooks.info/

Using OpenStack Storage

122

How it works...
Granting access control is done on a container basis and is achieved at the role level. When a
user creates a container by using the role they are in, other users can be granted that access
by adding other roles to the container. The users in the new role will then be granted read and
write access to containers, for example:

swift -V 2.0 -A http://keystone_server:5000/v2.0 -U tenant:user -K
password post container -w role -r role

Note that the roles that are allowed to use our OpenStack Storage environment are defined in
the proxy server, as follows:

[filter:keystone]

paste.filter_factory = keystone.middleware.swift_auth:filter_factory

operator_roles = Member,admin

www.it-ebooks.info

http://www.it-ebooks.info/

6
Administering

OpenStack Storage
In this chapter, we will cover:

 f Preparing drives for OpenStack Storage

 f Managing the OpenStack Storage cluster with swift-init

 f Checking cluster health

 f OpenStack Storage benchmarking

 f Managing capacity

 f Removing nodes from a cluster

 f Detecting and replacing failed hard drives

 f Collecting usage statistics

Introduction
Day to day administration of our OpenStack Storage cluster involves ensuring the files within
the cluster are replicated to the right number of nodes, reporting on usage within the cluster,
and dealing with failure of the cluster. This section introduces the tools and processes
required to administer OpenStack Storage.

Preparing drives for OpenStack Storage
OpenStack Storage doesn't have any dependencies on any particular filesystem, as
long as that filesystem supports extended attributes (xattr). But, it has been generally
acknowledged that the XFS filesystem yields the best all-round performance and resilience.

www.it-ebooks.info

http://www.it-ebooks.info/

Administering OpenStack Storage

124

Getting ready
Log in to a swift node that has a disk ready to be formatted for use with OpenStack Storage.

How to do it...
Carry out the following steps to prepare a hard drive for use within an OpenStack
Storage node:

1. For this, we will assume our new drive is ready for use, has been set up with
an appropriate partition, and is ready for formatting. Take for example the
partition /dev/sdb1. To format it for use, using XFS, we run the following command:
sudo mkfs.xfs -i size=1024 /dev/sdb1

2. This produces a summary screen of the new drive and partition, as follows:

3. Once formatted, we set the mount options in our /etc/fstab file, as follows:
/dev/sdb1 /srv/node/sdb1 xfs noatime,nodiratime,nobarrier,logbu
fs=8 0 0

4. If the directory mount point doesn't exist, create it, and then mount the filesystem
as follows:

mkdir -p /srv/node/sdb1

mount /srv/node/sdb1

How it works...
While it is recommended you do thorough testing of OpenStack Storage for your own
environments, it is generally recommended that you use the XFS filesystem. OpenStack
Storage requires a filesystem that supports extended attributes (xattr) and it has been
shown that XFS offers good all-round performance in all areas.

In order to accommodate the metadata used by OpenStack Storage, we increase the inode
size to 1024. This is set at the time of the format with the -i size=1024 parameter.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

125

Further performance considerations are set at mount time. We don't need to record file
access times (noatime) and directory access times (nodiratime). Barrier support flushes
the write-back cache to disk at an appropriate time. Disabling this yields a performance boost,
as the highly available nature of OpenStack Storage allows for failure of a drive (and therefore,
write of data), so this safety net in our filesystem can be disabled (with the nobarrier
option), to increase speed.

Managing the OpenStack Storage cluster
with swift-init

Services in our OpenStack Storage environment can be managed using the swift-init tool.
This tool allows us to control all the daemons in OpenStack Storage in a convenient way.

Getting ready
Log in to any OpenStack Storage node.

How to do it...
The swift-init tool can be used to control any of the running daemons in our OpenStack
Storage cluster, which makes it a convenient tool, rather than calling individual init scripts.

Each command can be succeeded with the following:

Controlling OpenStack Storage proxy

swift-init proxy-server { command }

Controlling OpenStack Storage object daemons

swift-init object { command }

swift-init object-replicator {command }

swift-init object-auditor { command }

swift-init object-updater { command }

Controlling OpenStack Storage container daemons

swift-init container { command }

swift-init container-update { command }

swift-init container-replicator { command }

swift-init container-auditor { command }

www.it-ebooks.info

http://www.it-ebooks.info/

Administering OpenStack Storage

126

Controlling OpenStack Storage account daemons

swift-init account { command }

swift-init account-auditor { command }

swift-init account-reaper { command }

swift-init account-replicator { command }

Controlling all daemons

swift-init all { command }

{ command } can be one of the following:

Command Description
stop, start, and restart As stated
force-reload and reload These mean the same thing—graceful shutdown and restart
shutdown Shutdown after waiting for current processes to finish
no-daemon Start a server within the current shell
no-wait Spawn server and return immediately
once Start server and run one pass
status Display the status of the processes for the server

How it works...
The swift-init tool is a single tool that can be used to manage any of the running
OpenStack Storage daemons. This allows for consistency in managing our cluster.

Checking cluster health
We are able to measure the health of our cluster by using the swift-dispersion-report
tool. This is done by checking the set of our distributed containers, to ensure that the objects
are in their proper places within the cluster.

Getting ready
Log in to the OpenStack Storage Proxy Server.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

127

How to do it...
Carry out the following steps to set up the swift-dispersion tools to report on
cluster health:

1. We first create the configuration file (/etc/swift/dispersion.conf) required by
the swift-dispersion tools, as follows:
[dispersion]
auth_url = http://172.16.0.1:5000/auth/v2.0
auth_user = cookbook:admin
auth_key = openstack

2. Once this is in place, we need to create containers and objects throughout our
cluster, so that they are in distinct places, by using the swift-dispersion-
populate tool. We do this as follows:
sudo swift-dispersion-populate

3. Once these containers and objects have been set up, we can then run swift-
dispersion-report, as follows:
sudo swift-dispersion-report

This produces the following result:

4. We can then set up a cron job that repeatedly checks the health of these containers
and objects. We do this as follows:
echo "/usr/bin/swift-dispersion-report" | sudo tee -a /etc/cron.
hourly/swift-dispersion-report

How it works...
The health of objects can be measured by checking whether the replicas are correct. If our
OpenStack Storage cluster replicates an object 3 times and 2 of the 3 are in the correct place,
the object would be 66.66% healthy.

www.it-ebooks.info

http://www.it-ebooks.info/

Administering OpenStack Storage

128

To ensure we have enough replicated objects in our cluster, we populate it with the
swift-dispersion-populate tool, which creates 2,621 containers and objects,
thereby increasing our cluster size. Once in place, we can then set up a cron job that
will run hourly to ensure our cluster is consistent and therefore giving a good indication
that our cluster is healthy.

By setting up a cron job on our proxy node (which has access to all our nodes), we can
constantly measure the health of our entire cluster. The cron job runs hourly, executing the
swift-dispersion-report tool.

OpenStack Storage benchmarking
Understanding the capabilities of your OpenStack Storage environment is crucial to
determining limits for capacity planning and areas for performance tuning. OpenStack
Storage provides a tool named swift-bench that helps you understand these capabilities.

Getting ready
Log in to the swift-proxy node as the root user.

How to do it...
Carry out the following to benchmark an OpenStack Storage cluster:

1. First, create a configuration file named /etc/swift/swift-bench.conf, with the
following contents:
[bench]
auth = http://172.16.0.1:5000/v2.0
user = cookbook:admin
key = openstack
concurrency = 10
object_size = 1
num_objects = 1000
num_gets = 10000
delete = yes

2. With this in place, we can simply execute swift-bench, specifying our
configuration file:
swift-bench /etc/swift/swift-bench.conf

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

129

3. This produces the following output:

How it works...
OpenStack Storage comes with a benchmarking tool named swift-bench. This runs through
a series of puts, gets, and deletions, calculating the throughput and reporting of any failures
in our OpenStack Storage environment. The configuration file is as follows:

[bench]
auth = Keystone authentication URL or OpenStack Storage Proxy
Tempauth Address
user = tenant:username
key = key/password
concurrency = number of concurrent operations
object_size = the size of the object in Bytes
num_objects = number of objects to upload
num_gets = number of objects to download
delete = whether to perform deletions

The user specified must be capable of performing the required operations in our environment,
including the creation of containers.

Managing capacity
A zone is a group of nodes that is as isolated as possible from other nodes (separate servers,
network, power, even geography). The ring guarantees that every replica is stored in a separate
zone. To increase capacity in our environment, we can add an extra zone, to which data will
then replicate. In this example, we will add an extra storage node, with its second disk, /dev/
sdb, used for our OpenStack Storage. This node makes up the only node in this zone.

To add additional capacity to existing zones, we repeat the instructions for each existing zone
in our cluster. For example, the following steps assume zone 5 (z5) doesn't exist, so this gets
created when we build the rings. To simply add additional capacity to existing zones, we specify
the new servers in the existing zones (zones 1-4). The instructions remain the same throughout.

www.it-ebooks.info

http://www.it-ebooks.info/

Administering OpenStack Storage

130

Getting ready
Log in to the OpenStack Storage proxy server node as well as a new storage node (that will
form the basis of our new zone).

How to do it...
To add an extra zone to our OpenStack Storage cluster, carry out the following:

Proxy Server

1. We first need to add the following entries to the ring where STORAGE_LOCAL_NET_
IP is the IP address of our new node and ZONE is our new zone:
cd /etc/swift

ZONE=5

STORAGE_LOCAL_NET_IP=172.16.0.4

WEIGHT=100

DEVICE=sdb1

swift-ring-builder account.builder add z$ZONE-$STORAGE_LOCAL_NET_
IP:6002/$DEVICE $WEIGHT

swift-ring-builder container.builder add z$ZONE-$STORAGE_LOCAL_
NET_IP:6001/$DEVICE $WEIGHT

swift-ring-builder object.builder add z$ZONE-$STORAGE_LOCAL_NET_
IP:6000/$DEVICE $WEIGHT

2. We need to verify the contents of the rings by issuing the following commands:
swift-ring-builder account.builder

swift-ring-builder container.builder

swift-ring-builder object.builder

Ensure you run these commands while in the
/etc/swift directory.

3. Finally, we rebalance the rings, which could take some time to run:
swift-ring-builder account.builder rebalance

swift-ring-builder container.builder rebalance

swift-ring-builder object.builder rebalance

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

131

4. Once this has finished, we need to copy account.ring.gz, container.ring.gz,
and object.ring.gz over to our new storage node and all other storage nodes:

scp *.ring.gz $STORAGE_LOCAL_NET_IP:/tmp

And scp to other storage nodes

Storage Node

1. We first move the copied account.ring.gz, container.ring.gz, and object.
ring.gz files to the /etc/swift directory and ensure they're owned by swift:
sudo mv /tmp/*.ring.gz /etc/swift

sudo chown swift:swift /etc/swift/*.ring.gz

2. We can now prepare the storage on this node, as described in the first recipe of this
chapter, Preparing drives for OpenStack Storage.

3. Edit the /etc/swift/swift.conf file, so that the [swift-hash] section
matches that of all other nodes, as follows:
[swift-hash]
Random unique string used on all nodes
swift_hash_path_suffix = QAxxUPkzb7lP29OJ

4. We now need to create the appropriate /etc/rsyncd.conf file with the
following contents:
uid = swift
gid = swift
log file = /var/log/rsyncd.log
pid file = /var/run/rsyncd.pid
address = 172.16.0.4

[account]
max connections = 2
path = /srv/node/
read only = false
lock file = /var/lock/account.lock

[container]
max connections = 2
path = /srv/node/
read only = false
lock file = /var/lock/container.lock

[object]
max connections = 2
path = /srv/node/
read only = false
lock file = /var/lock/object.lock

www.it-ebooks.info

http://www.it-ebooks.info/

Administering OpenStack Storage

132

5. Enable and start rsync, as follows:
sudo sed -i 's/=false/=true/' /etc/default/rsync

sudo service rsync start

6. We need to create the /etc/swift/account-server.conf file with the
following contents:
[DEFAULT]
bind_ip = 172.16.0.4
workers = 2

[pipeline:main]
pipeline = account-server

[app:account-server]
use = egg:swift#account

[account-replicator]

[account-auditor]

[account-reaper]

7. Also create the /etc/swift/container-server.conf file with the
following contents:
[DEFAULT]
bind_ip = 172.16.0.4
workers = 2

[pipeline:main]
pipeline = container-server

[app:container-server]
use = egg:swift#container

[container-replicator]

[container-updater]

[container-auditor]

8. Finally, create the /etc/swift/object-server.conf file with the
following contents:
[DEFAULT]
bind_ip = 172.16.0.4
workers = 2

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

133

[pipeline:main]
pipeline = object-server

[app:object-server]
use = egg:swift#object

[object-replicator]

[object-updater]

[object-auditor]

9. We can now simply start this storage node, which we have configured to be in our fifth
zone, as follows:
sudo swift-init all start

How it works...
Adding extra capacity by adding additional nodes or zones is done with the following two steps:

1. Configuring the zones and nodes on the proxy server

2. Configuring the storage node(s)

For each storage node, and the devices on those storage nodes, we run the following
command, which adds the storage node and device to our new zone:

swift-ring-builder account.builder add zzone-storage_ip:6002/device
weight

swift-ring-builder container.builder add zzone-storage_ip:6001/device
weight

swift-ring-builder object.builder add zzone-storage_ip:6000/device weight

Once this has been configured on our proxy node, we rebalance the rings. This updates the
object, account, and container rings. We copy the updated gzipped files as well as the swift
hash key used within our environment, to all our storage node(s).

On the storage node, we simply run through the following steps:

1. Configure the disk (partition and format with XFS).

2. Configure and start rsyncd.

3. Configure the account, container, and object services.

4. Start the OpenStack Storage services on the storage node(s).

Data is then redistributed within our OpenStack Storage environment onto this new
zone's node.

www.it-ebooks.info

http://www.it-ebooks.info/

Administering OpenStack Storage

134

Removing nodes from a cluster
Converse to adding capacity to our OpenStack Storage cluster, there may be times where we
need to scale back. We can do this by removing nodes from the zones in our cluster. In the
following example, we will remove the node 172.16.0.4 in z5, which only has one storage
device attached, /dev/sdb1.

Getting ready
Log in to the OpenStack Storage proxy server node.

How to do it...
Carry out the following to remove a storage node from a zone:

Proxy Server

1. To remove a node from OpenStack Storage, we first set its weight to be 0, so that
when the rings get rebalanced, data is drained away from this node:
cd /etc/swift

swift-ring-builder account.builder set_weight z5-172.16.0.4:6002/
sdb1 0

swift-ring-builder container.builder set_weight z5-
172.16.0.4:6001/sdb1 0

swift-ring-builder object.builder set_weight z5-172.16.0.4:6000/
sdb1 0

2. We then rebalance the rings as follows:
swift-ring-builder account.builder rebalance

swift-ring-builder container.builder rebalance

swift-ring-builder object.builder rebalance

3. Once this is done, we can remove the node in this zone from the ring, as follows:
swift-ring-builder account.builder remove z5-172.16.0.4:6002/sdb1

swift-ring-builder container.builder remove z5-172.16.0.4:6001/
sdb1

swift-ring-builder object.builder remove z5-172.16.0.4:6000/sdb1

4. We then copy the resultant account.ring.gz, container.ring.gz, and
object.ring.gz files over to the rest of the nodes in our cluster. We are now
free to decommission this storage node by physically removing this device.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

135

How it works...
Manually removing a node from our OpenStack Storage cluster is done in three steps:

1. Setting the node's weight to be 0, so data isn't being replicated to it, by using the
swift-ring-builder <ring> set_weight command.

2. Rebalancing the rings to update the data replication.

3. Removing the node from the OpenStack Storage cluster, using the
swift-ring-builder <ring> remove command.

Once done, we are then free to decommission that node. We repeat this for each node
(or device) in the zone.

Detecting and replacing failed hard drives
OpenStack Storage won't be of much use if it can't access the hard drives where our data is
stored; so being able to detect and replace failed hard drives is essential.

Getting ready
Log in to an OpenStack Storage node as well as the proxy server.

How to do it...
To detect a failing hard drive, carry out the following:

Storage node

1. We first need to configure a cron job that monitors /var/log/kern.log for failed
disk errors on our storage nodes. To do this, we create a configuration file named /
etc/swift/swift-drive-audit.conf, as follows:
[drive-audit]
log_facility=LOG_LOCAL0
log_level=INFO
device_dir=/srv/node
minutes=60
error_limit=1

2. We then add a cron job that executes swift-drive-audit hourly, as follows:
echo '/usr/bin/swift-drive-audit /etc/swift/swift-drive-audit.
conf' | sudo tee -a /etc/cron.hourly/swift-drive-audit

www.it-ebooks.info

http://www.it-ebooks.info/

Administering OpenStack Storage

136

3. With this in place, when a drive has been detected as faulty, the script will unmount
it, so that OpenStack Storage can work around the issue. Therefore, when a disk has
been marked as faulty and taken offline, you can now replace it.

Without swift-drive-audit taking care of this
automatically, should you need to act manually, ensure
the disk has been unmounted and removed from the ring.

4. Once the disk has been physically replaced, we can follow the instructions as
described in the Managing capacity recipe to add our node or device back into
our cluster.

How it works...
Detection of failed hard drives can be picked up automatically by the swift-drive-audit
tool, which we set up as a cron job to run hourly. With this in place, it detects failures, unmounts
the drive so it can't be used, and updates the ring, so that data isn't being stored or replicated
to it.

Once the drive has been removed from the rings, we can run maintenance on that device and
replace the drive.

With a new drive in place, we can then put the device back in service on the storage
node by adding it back into the rings. We can then rebalance the rings by running the
swift-ring-builder commands.

Collecting usage statistics
OpenStack Storage can report on usage metrics by using the swift-recon middleware
added to our object-server configuration. By using a tool, also named swift-recon,
we can then query these collected metrics.

Getting ready
Log in to an OpenStack Storage node as well as the proxy server.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

137

How to do it...
To collect usage statistics from our OpenStack Storage cluster, carry out the following:

1. We first need to modify our /etc/swift/object-server.conf configuration file
to include the swift-recon middleware, so that it looks similar to the following:
[DEFAULT]
bind_ip = 0.0.0.0
workers = 2

[pipeline:main]
pipeline = recon object-server

[app:object-server]
use = egg:swift#object

[object-replicator]

[object-updater]

[object-auditor]

[filter:recon]
use = egg:swift#recon
recon_cache_path = /var/cache/swift

2. Once this is in place, we simply restart our object-server service, using swift-
init, as follows:
swift-init object-server restart

Now that the command is running, we can use the swift-recon tool on the proxy server to
get usage statistics, as follows:

Disk usage

swift-recon -d

This will report on disk usage in our cluster.

swift-recon -d -z5

www.it-ebooks.info

http://www.it-ebooks.info/

Administering OpenStack Storage

138

This will report on disk usage in zone 5.

Load average

swift-recon -l

This will report on the load average in our cluster.

swift-recon -l -z5

This will report on the load average of the nodes in zone 5.

Quarantined statistics

swift-recon -q

This will report on any quarantined containers, objects, and accounts in the cluster.

swift-recon -q -z5

This will report on this information just for zone 5.

Check for unmounted devices

swift-recon -u

This will check for any unmounted drives in our cluster.

swift-recon -z5 -u

This will do the same just for zone 5.

Check replication metrics

swift-recon -r

This will report on the replication status within our cluster.

swift-recon -r -z5

This will just perform this for nodes in zone 5.

We can perform all these actions with a single command to get all telemetry data back about
our cluster, as follows:

swift-recon --all

We can just get this information for nodes within zone 5 by adding -z5 at the end, as follows:

swift-recon --all -z5

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

139

How it works...
To enable usage statistics within OpenStack Storage, we add in the swift-recon
middleware, so metrics are collected. We add this to the object server by adding the
following lines to /etc/swift/object-server.conf, on each of our storage nodes:

[pipeline:main]
pipeline = recon object-server

[filter:recon]
use = egg:swift#recon
recon_cache_path = /var/cache/swift

With this in place and our object servers restarted, we can query this telemetry data by using
the swift-recon tool. We can collect the statistics from the cluster as a whole, or from
specific zones, with the -z parameter.

Note that we can also collect all or multiple statistics by specifying the --all flag or
appending multiple flags to the command line. For example, to collect load average and
replication statistics from our nodes in zone 5, we would execute the following command:

swift-recon -r -l -z5

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

7
Glance OpenStack

Image Service
In this chapter, we will cover:

 f Installing OpenStack Image Service

 f Configuring OpenStack Image Service with MySQL

 f Configuring OpenStack Image Service with OpenStack Storage

 f Configuring OpenStack Compute with OpenStack Image Service

 f Managing images with OpenStack

 f Image Service

 f Registering a remotely stored image

Introduction
OpenStack Image Service, known as Glance, is the service that allows you to register,
discover, and retrieve virtual machine images for use in our OpenStack environment. Images
made available through OpenStack Image Service can be stored in a variety of backend
locations, from local filesystem storage to distributed filesystems such as OpenStack Storage.

Installing OpenStack Image Service
Installation of OpenStack Image Service is simply achieved by using the packages provided
from the Ubuntu repositories. If you followed the guide in Chapter 1, Starting OpenStack
Compute, we already installed and configured OpenStack Image Service appropriately for
our test setup, but as OpenStack has been designed so that the components and services
can be deployed across multiple machines, we will go through the steps here to specifically
set up the service.

www.it-ebooks.info

http://www.it-ebooks.info/

Glance OpenStack Image Service

142

Getting ready
To begin with, ensure you are logged in to the server on which you want to install OpenStack
Image Service.

How to do it...
Installation of OpenStack Image Service is very simple, using apt. We do this as follows:

sudo apt-get update

sudo apt-get -y install glance

To install just the client that allows us to administer and use OpenStack Image Service without
needing to log onto our server, we do the following:

sudo apt-get update

sudo apt-get -y install glance-client

How it works...
The Ubuntu stable repositories have an appropriate version of OpenStack Image Service for
our environment.

There's more...
There are various ways to install OpenStack, from source code building to installation from
packages, but this represents the easiest and most consistent method available. There are
also alternative releases of OpenStack available. The ones available from Ubuntu 12.04 LTS
repositories are known as Essex and represent the latest stable release, at the time of writing.

Using an alternative release
Deviating from stable releases is appropriate when you are helping develop or debug
OpenStack, or require functionality that is not available in the current release. To enable
different releases, add different Personal Package Archives (PPA) to your system. To view
the OpenStack PPAs, visit http://wiki.openstack.org/PPAs. To use them, we first
install a tool that allows us to easily add PPAs to our system, as follows:

sudo apt-get update

sudo apt-get -y install python-software-properties

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

143

To use a particular release PPA we issue the following command:

 f Milestones (periodic releases leading up to a stable release)
sudo add-apt-repository ppa:openstack-ppa/milestone
sudo apt-get update

 f Bleeding Edge (Master Development Branch)
sudo add-apt-repository ppa:openstack-ppa/bleeding-edge
sudo apt-get update

Once you have configured apt to look for an alternative place for packages, you can repeat
the preceding process for installing packages, if you are creating a new machine based on a
different package set. Or, you can simply type:

sudo apt-get upgrade

This will make apt look in the new package archive areas for later releases of packages.

Configuring OpenStack Image Service
with MySQL

In order to scale OpenStack effectively, we must move our local database store for OpenStack
Image Service to a central, scalable, and more resilient database tier. For this, we will use our
MySQL database.

Getting ready
To begin with, ensure you are logged into the server where OpenStack Image Service is
installed, and become the root user.

How to do it...
Carry out the following steps:

1. Once OpenStack Image Service is installed, we can now create the glance database
in our MySQL database server. We do this as follows:
PASSWORD=openstack
mysql -uroot -p$PASSWORD -e 'CREATE DATABASE glance;'

2. We now create a glance user, with the password openstack and with privileges to
use this database, as follows:
mysql -uroot -p$PASSWORD -e "GRANT ALL PRIVILEGES ON glance.* TO
'glance'@'%';"
mysql -u root -p$PASSWORD -e "SET PASSWORD FOR 'glance'@'%' =
PASSWORD('openstack');"

www.it-ebooks.info

http://www.it-ebooks.info/

Glance OpenStack Image Service

144

3. Then, we need to configure OpenStack Image Service to use this database by
editing the /etc/glance/glance-registry.conf file and change the
sql_connection line to match the database credentials. We do this as follows:
sudo sed -i 's#^sql_connection.*#sql_connection = mysql://
glance:openstack@172.16.0.1/glance#' /etc/glance/glance-registry.
conf

4. We can now restart the keystone service, as follows:
sudo stop glance-registry

sudo start glance-registry

5. On start-up, the OpenStack Image Service Registry database is automatically
populated with the correct tables.

How it works...
OpenStack Image Service is split into two running services—glance-api and glance-
registry—and it is the glance-registry service that connects to the database backend.
The first step is to create our glance database and glance user, so it can perform operations
on the glance database that we have created.

Once this is done, we modify the /etc/glance/glance-registry.conf file so that
glance knows where to find and connect to our MySQL database. This is provided by the
standard SQLAlchemy connection string that has the following syntax:

sql_connection = mysql://USER:PASSWORD@HOST/DBNAME

Configuring OpenStack Compute with
OpenStack Image Service

Once we have OpenStack Image Service configured and running, in order for our OpenStack
Compute environment to connect to this service for our images, we modify the --image_
service and --glance_api_servers flags in our /etc/nova/nova.conf file.

Getting ready
To begin with, ensure you are logged in to the server where OpenStack Image Service
is installed.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

145

How to do it...
Carry out the following steps to configure OpenStack Compute to use OpenStack
Image Service:

1. To get our OpenStack Compute service to communicate with OpenStack Image
Service instead of the default image service, we edit /etc/nova/nova.conf to
include the following lines:
--image_service=nova.image.glance.GlanceImageService
--glance_api_servers=172.16.0.1:9292

2. We then restart the nova-api and nova-objectstore services to pick up
this change.
sudo restart nova-api

sudo restart nova-objectstore

How it works...
As we configure OpenStack Compute to use OpenStack Image Service, we modify the
file /etc/nova/nova.conf, with the following flags:

 f The --image_service flag specifies the libraries to load for managing images. We
point this to the GlanceImageService libraries.

 f The --glance_api_servers flag is used to direct OpenStack Compute to where
we have installed OpenStack Image Service and the port we have configured the
glance-api service to run on. By default, the glance-api service runs on TCP
port 9292.

Configuring OpenStack Image Service with
OpenStack Storage

Configuring OpenStack Image Service to use OpenStack Storage allows us to keep our images
on easily accessible storage.

Getting ready
To begin with, ensure you are logged in to the server where OpenStack Image Service
is installed.

www.it-ebooks.info

http://www.it-ebooks.info/

Glance OpenStack Image Service

146

How to do it...
Carry out the following steps to configure OpenStack Image Service to use OpenStack Storage:

1. We first need to install a package on our OpenStack Image Service host, that allows it
to communicate to our OpenStack Storage service. We do this as follows:
sudo apt-get update

sudo apt-get -y install python-swift

2. We now ensure that we are able to authenticate to our OpenStack proxy server using
the swift user Identity Service credentials created in Chapter 4, Installing OpenStack
Storage. We can do this as follows, using the swift command:
swift -V 2.0 -A http://172.16.0.1:5000/v2.0/ -U service:swift -K
swift stat

3. We will get stats on our environment, such as the number of containers and objects,
and so on, when successful.

4. We can now configure the /etc/glance/glance-api.conf file as required, in
order to use OpenStack Storage as our file store, as follows:
sudo sed -i 's/^default_store.*/default_store = swift/' /etc/
glance/glance-api.conf

5. Once done, we can configure the same /etc/glance/glance-api.conf file to
put values that are appropriate for connecting to OpenStack Storage:
swift_store_auth_address = http://172.16.0.1:5000/v2.0/

swift_store_user = service:swift

swift_store_key = swift

swift_store_container = glance

6. We must also ensure there is a container in our OpenStack Storage datastore called
glance, as this is specified in /etc/glance/glance-api.conf, too. To create
this container using the swift tool, we can do the following:
swift -V 2.0 -A http://172.16.0.1:5000/v2.0/ -U
service:swift -K swift post glance

7. Once done, we can restart our glance-api service to pick up these changes,
as follows:
sudo restart glance-api

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

147

8. Once restarted, when we upload images, they will now be stored in
OpenStack Storage.

Warning: If you have previously uploaded images to OpenStack Image
Service prior to changing over to OpenStack Storage, you will need to
re-upload your images so that they exist in OpenStack Storage.

How it works...
Setting up OpenStack Image Service to use OpenStack Storage as its backing store is
straightforward. Once you have created an appropriate account that OpenStack Image Service
can use to store images in OpenStack Storage, you configure the glance-api.conf file
appropriately to point to your OpenStack Storage proxy server with these account details.
The key configuration lines are:

swift_store_auth_address = http://KEYSTONE_HOST:5000/v2.0/

swift_store_user = service:USER

swift_store_key = PASSWORD
swift_store_container = glance

You also must ensure that the target swift_store_container exists within the OpenStack
Storage datastore, before you can use OpenStack Image Service.

See also
 f The Configuring OpenStack Storage with OpenStack Identity Service recipe in

Chapter 4, Installing OpenStack Storage

Managing images with OpenStack
Image Service

Uploading and managing images within OpenStack Storage is achieved using the glance
command-line tool. This tool allows us to upload, remove, and change information about the
stored images for use within our OpenStack environment.

Getting ready
To begin with, ensure you are logged in to our Ubuntu client, where we can run the glance
tool. This can be installed using:

sudo apt-get update
sudo apt-get -y install glance-client

www.it-ebooks.info

http://www.it-ebooks.info/

Glance OpenStack Image Service

148

How to do it...
We can upload and view images in OpenStack Image Service in a number of ways. Carry out
the following steps to upload and show details of our uploaded images:

Uploading Ubuntu images

To upload tarball cloud bundles using glance through the cloud-publish-tarball
command, we can do the following, using the glance client:

1. First, we download an Ubuntu cloud image from ubuntu.com, as follows:
wget http://cloud-images.ubuntu.com/releases/precise/release/
ubuntu-12.04-server-cloudimg-i386.tar.gz

2. We then unpack this using the following command:
tar zvxf ubuntu-12.04-server-cloudimg-i386.tar.gz

3. We can now upload the kernel from the tarball into glance, specifying a name for
this kernel, as follows:
Source in our OpenStack Credentials
. keystonerc

Upload the kernel (and store ID)

KERNEL=$(glance add name='Ubuntu 12.04 i386 Kernel'
disk_format=aki container_format=aki distro='Ubuntu' is_
public=true < precise-server-cloudimg-i386-vmlinuz-virtual |
awk '/ ID/ { print $6 }')

4. We then use the kernel ID that we have stored in KERNEL, to upload our machine
image, as follows:
Upload Machine Image

glance add name='Ubuntu 12.04 i386 Server' disk_format=ami
container_format=ami distro='Ubuntu' kernel_id=$KERNEL is_
public=true < precise-server-cloudimg-i386.img

You will see output similar to the following:

Uploading image 'Ubuntu 12.04 i386 Server'

========================[100%] 6.68M/s, ETA 0h 0m 0s

Added new image with ID: 469460b0-464d-43f8-810d-ce1c919b25e9

Listing images

To list the images in our OpenStack Image Service repository, we can use the familiar
euca-describe-images or nova image-list commands from our client, as using
OpenStack Image Service doesn't change how we access our cloud environment. However,
to get detailed information, we use the glance tool.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

149

To list the private images for our demo user and public contents of our glance registry, we
need to send a valid user authorization token, as follows:

glance index

This produces the following result:

ID Name Disk Format Container Format Size
16 oneiric-server-i386 ami ami 1476395008

Viewing image details

We can view further details about our images in the repository. To show all the details for our
images, we issue the following command:

glance details

This returns a detailed list of all our images, for example:

To see a specific image detail, we issue the following command:

glance show f4b75e07-38fa-482b-a9c5-e5dfcc977b02

Deleting images

There will be times when you will need to remove images from being able to be called
within your OpenStack cloud environment. You can delete public and private images from
the glance server.

1. To delete an image, issue the following command:
glance delete f4b75e07-38fa-482b-a9c5-e5dfcc977b02

2. You will then be asked to confirm. Press Y to confirm.

3. Once confirmation is complete, OpenStack Image Service will respond that the image
has been removed. You can verify this with the glance index command.

www.it-ebooks.info

http://www.it-ebooks.info/

Glance OpenStack Image Service

150

To remove all public images from OpenStack Image Service, we can issue the
following command:

1. Removing all our images from glance is achieved with:
glance clear --verbose

2. You will then be asked to confirm where it will print out the images it is deleting.

Making private images public

When you upload an image using cloud/euca2ools commands, such as euca-upload-
bundle and cloud-publish-tarball, they get entered into OpenStack Image Service
and are only accessible by the user who uploaded them. This marks them as private. If an
image is uploaded this way but you want to make it public, you do the following in OpenStack
Image Service:

1. First, list and view the image(s) that you want to make public. In this case, we will
choose our first uploaded image.
glance show f4b75e07-38fa-482b-a9c5-e5dfcc977b02

This produces results somewhat similar to the following:

2. We can now convert this to a public image, available to all users of our cloud
environment, with the following command:
glance update f4b75e07-38fa-482b-a9c5-e5dfcc977b02 is_public=True

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

151

3. Issue a public glance listing as follows:
glance details

We will now see this:

How it works...
OpenStack Image Service is a very flexible system for managing images in our private
cloud environment. It allows us to modify many aspects of our OpenStack Image Service
registry—from adding new images, deleting them, and updating information, such as the
name that is used so end users can easily identify them, to making private images public
and vice-versa.

To do all this, we use the glance tool from any connected client. To use the glance tool,
we source in our OpenStack Identity Service credentials.

Registering a remotely stored image
OpenStack Image Service provides a mechanism to remotely add an image that is stored
at an externally accessible location. This allows for a convenient method of adding
images we might want to use for our private cloud that has been uploaded to an
external third-party server.

Getting ready
To begin with, ensure you are logged in to our Ubuntu client, where we can run the glance
tool. This can be installed using the following command:

sudo apt-get update

sudo apt-get -y install glance-client

www.it-ebooks.info

http://www.it-ebooks.info/

Glance OpenStack Image Service

152

How to do it...
Carry out the following steps to remotely store an image into OpenStack Image Service:

1. To register a remote virtual image into our environment, we add a location parameter
instead of streaming the image through a pipe on our glance command line:
glance add name="CentOS 5.3" is_public=true distro="CentOS"
container_format=ovf disk_format=vhd location="http://a.webserver.
com/images/centos-5.3.vhd"

2. This returns information similar to the following that is then stored in OpenStack
Image Service:

How it works...
Using the glance tool to specify remote images directly provides a quick and convenient way
to add images to our OpenStack Image Service repository. The way this happens is with the
location parameter. We add in our usual meta information to accompany this, as we would
with a locally specified image.

www.it-ebooks.info

http://www.it-ebooks.info/

8
Nova Volumes

In this chapter, we will cover:

 f Configuring nova-volume services

 f Configuring OpenStack Compute for nova-volume

 f Creating volumes

 f Attaching volumes to instances

 f Detaching volumes from an instance

 f Deleting volumes

Introduction
Data written to currently running instances on disks is not persistent—meaning that when
you terminate such instances, any disk writes will be lost. Volumes are persistent storage
that you can attach to your running OpenStack Compute instances; the best analogy is
that of a USB drive that you can attach to an instance. Like USB drives, you can only attach
instances to one computer at a time. Nova Volumes are very similar to Amazon EC2's Elastic
Block Storage—the difference is how these are presented to the running instances. Under
OpenStack Compute, these can easily be managed using an iSCSI exposed LVM volume
group named nova-volumes, so this must be present on any host running the service
nova-volume.

nova-volume is the running service.

nova-volumes is the name of the LVM Volume Group that
is exposed by the nova-volume service.

www.it-ebooks.info

http://www.it-ebooks.info/

Nova Volumes

154

Configuring nova-volume services
In this section, we will add a new disk to our VirtualBox VM, OpenStack1, and add the
prerequisites that nova-volume requires to attach volumes to our instances.

Getting ready
To use Nova Volumes, we will make some changes to our OpenStack1 Virtual Machine. This
is because we need to power it off and add a new volume to this VM, so that we have an
LVM-managed volume named nova-volumes. We will then configure this drive under
Ubuntu and make the volume available to nova-volume.

How to do it...
We first need to configure our storage for use by nova-volume. We can then set up LVM
appropriately, by creating a volume group named nova-volumes, on that new storage.
Following this, we install and configure prerequisites such as open-iscsi. Once complete,
we simply set up nova-volume.

Adding a new disk to a VirtualBox Virtual Machine

1. Ensure your host is powered off. Add new storage by clicking on your OpenStack1
VirtualBox Virtual Machine and clicking on Settings.

2. Under Storage Tree, click on the second + sign at the end of the section that says
SATA Controller, as shown in the following screenshot (note that there are two—the
first is a CD-ROM drive and the second is the option to add in a new disk):

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

155

3. When presented with a dialog box, select Create new disk of type VDI and size 20
GB. For a name, for ease of administration in VirtualBox, call this Nova-Volumes-
OpenStack1, as shown in the following screenshot:

4. Once done, power the OpenStack1 VM back on.

Alternatively, using the command line:

We can use the VBoxManage command from our VirtualBox install and run the following in a
shell on our computer, to add in a new disk:

VBoxManage createhd --filename Nova-Volumes-OpenStack1.vdi --size 20480

VBoxManage storageattach openstack1 --storagectl "SATA Controller" --port
1 --device 0 --type hdd --medium Nova-Volumes-OpenStack1.vdi

Configuring your new storage for use by nova-volume

1. Now we must use fdisk to configure the new volume:
sudo fdisk /dev/sdb

www.it-ebooks.info

http://www.it-ebooks.info/

Nova Volumes

156

2. Under the fdisk menu, we do the following:

 � Press n, and then hit Enter

 � Press p, and then hit Enter

 � Press 1, and then hit Enter

 � Press Enter when asked for start sector (default 2048)

 � Press Enter when asked for the last sector (default)

 � Back at the main fdisk menu press t, then Enter

 � Type in 8e, and then press Enter (to set partition type to Linux LVM)

 � To confirm that you have created a new LVM partition on your new volume, at
the main menu press p and then Enter

 � Press w to write these changes to disk and to exit fdisk.

3. To force Linux to see these changes, we run the partprobe command, as follows:
sudo partprobe

4. As we chose to create our LVM volume in partition 1 of /dev/sdb, this should display
as /dev/sdb1. To create our nova-volumes LVM volume group on /dev/sdb1, we
do the following:

sudo pvcreate /dev/sdb1

sudo vgcreate nova-volumes /dev/sdb1

Installing and configuring nova-volume and prerequisite services

1. nova-volume relies on the Open iSCSI service, so we install both nova-volume
and the required iscsi services on our openstack1 server, as follows:
sudo apt-get -y install nova-volume tgt

2. Once complete, we need to start the required tgt service on our nova-volume
host. We do this as follows:
sudo start tgt

3. Now, restart the nova-volume service to pick up the change, via the following
command:
sudo service nova-volume restart

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

157

How it works...
In order for us to use nova-volume, we need to prepare a suitable disk or partition that
has been configured as an LVM volume and that is specifically named nova-volumes. For
our virtual environment, we simply add a new disk that we can then set up to be part of this
LVM volume group. In a physical installation, the steps are no different. We simply configure
a partition to be of type 8e (Linux LVM) in fdisk and then add this partition to a volume group
named nova-volumes.

Once done, we then install the required nova-volume packages and supporting services. As
nova-volume uses iSCSI as the mechanism for attaching a volume to an instance, we install
the appropriate packages that are required to run iSCSI targets.

Configuring OpenStack Compute for
nova-volume

We now need to tell our OpenStack Compute service about our new nova-volume service.

Getting ready
Ensure you are logged in to your compute nodes, so we can install and configure the
appropriate packages in order to use the nova-volume attached storage.

How to do it...
Configuring OpenStack Compute nodes to use nova-volume involves installing the
appropriate package (that can communicate back to the iSCSI target) on our node.

1. First, install the open-iscsi package on our OpenStack Compute host. The
OpenStack Compute host is known as an iSCSI Initiator.
sudo apt-get -y install open-iscsi

2. Start the iSCSI service through the following command:
sudo service open-iscsi start

3. Finally, we instruct OpenStack Compute to use this iSCSI service for nova-volume,
by adding the following lines to our /etc/nova/nova.conf file:
iscsi_ip_address=172.16.0.1
--iscsi_helper=tgtadm

www.it-ebooks.info

http://www.it-ebooks.info/

Nova Volumes

158

4. We can now restart the nova-compute service as follows:
sudo service nova-compute restart

5. We can verify that we have all services running correctly, by running
the following:

sudo nova-manage service list

This should present us with an extra service line, now saying that nova-volume is happily
running on openstack1.

How it works...
The host running nova-volume is known as an iSCSI Target. The host running our compute
service is known as the iSCSI Initiator. The iSCSI Initiator package is started, which our
OpenStack Compute service then controls.

To make our OpenStack Compute host aware of our new nova-volume service, we add the
following to /etc/nova/nova.conf:

--iscsi_ip_address=NOVA-VOLUME-ADDRESS

--iscsi_helper=tgtadm

These lines tell the OpenStack Compute where the iSCSI Target is (which is the address of our
nova-volume server), and the service to use to locate the iSCSI services.

Creating volumes
Now that we have a usable nova-volume service, we can create volumes for use by our
instances. We do this under our Ubuntu client using one of the euca2ools, euca-create-
volumes, or the Nova Client tool, so we are creating volumes specific to our tenancy (project).

Getting ready
To begin with, ensure you are logged in to your Ubuntu client that has access to
the euca2ools or Nova Client tools. These packages can be installed using the
following command:

sudo apt-get update

sudo apt-get install euca2ools python-novaclient

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

159

How to do it...
Carry out the following steps to create a volume using euca2ools:

1. First, create the volume that we will attach to our instance. The size (-s) option is in
gigabytes, so we will create one with 5 GB. The zone option (-z) will be nova, for our
OpenStack setup.
Source in our ec2 credentials

. ec2rc

euca-create-volume -s 5 -z nova

2. You should see output similar to the following:
VOLUME vol-00000003 5 creating (cookbook, None, None, None)
2011-12-11T14:02:29Z

3. To view the status of any volumes, run the euca-describe-volumes command.
When the volume has been created, the status changes from creating to
available.
euca-describe-volumes

You should see output similar to the following:
VOLUME vol-00000003 5 nova available (cookbook, openstack1,
None, None) 2011-12-11T14:02:29Z

Note that this project has been created in cookbook, in the zone nova.

Carry out the following to create a volume using Nova Client:

1. First, create the volume that we will attach to our instance.
Source in our OpenStack Nova credentials

. keystonerc

nova volume-create --display_name volume1 5

2. On completion, the command simply returns with no output. To view our volumes
using Nova Client, we run the following command:
nova volume-list

www.it-ebooks.info

http://www.it-ebooks.info/

Nova Volumes

160

3. This returns output similar to the following:

+----+-----------+--------------+------+-------------+-------------+

| ID | Status | Display Name | Size | Volume Type | Attached to |

+----+-----------+--------------+------+-------------+-------------+

| 1 | available | None | 5 | None | |

| 2 | available | volume1 | 5 | None | |

+----+-----------+--------------+------+-------------+-------------+

How it works...
Creating nova-volumes for use within our project, cookbook, is very straightforward. Using
euca2ools, we use the euca-create-volume tool, which takes the following syntax:

euca-create-volume -s size_Gb -z zone

This then creates the volume to be used in our environment with an ID in the form vol-
00000000, on our nova-volume host.

With Nova Client, we use the create-volume option with the following syntax:

nova create-volume --display_name volume_name size_Gb

Here, volume_name can be any arbitrary name with no spaces.

We can see the actual LVM volumes on nova-volumes, using the usual LVM tools as follows:

sudo lvdisplay nova-volumes

--- Logical volume ---
LV Name /dev/nova-volumes/volume-00000001
VG Name nova-volumes
LV UUID G62e3s-gXcX-v8F8-jmGI-DgcY-O0Ny-i0GSNl
LV Write Access read/write
LV Status available
open 0
LV Size 5.00 GiB
Current LE 1280
Segments 1
Allocation inherit
Read ahead sectors auto
- currently set to 256
Block device 252:0

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

161

Attaching volumes to instances
Now that we have a usable volume, we can attach this to any instance. We do this by using
the euca-attach-volume command from euca2ools or the nova volume-attach
command in Nova Client.

Getting ready
To begin with, ensure you are logged in to the Ubuntu client that has access to euca2ools or
Nova Client tools. These packages can be installed using the following command:

sudo apt-get update

sudo apt-get-y install euca2ools python-novaclient

How to do it...
Carry out the following steps to attach a volume to an instance by using euca2ools:

1. If you have no instance running, spin one up. Once running, run the euca-
describe-instances command and note the instance ID.
Source in our EC2 credentials

. ec2rc

euca-describe-instances

The following output will be displayed
RESERVATION r-7r0wjd2o cookbook default
INSTANCE i-00000009 ami-00000002 172.16.1.1 10.0.0.3
running openstack (cookbook, openstack1) 0 m1.tiny
2011-12-11T15:33:43Z nova aki-00000001 ami-00000000

2. Using the instance ID, we can attach the volume to our running instance, as follows:
euca-attach-volume -i i-00000009 -d /dev/vdb vol-00000003

3. This will output the name of the volume when successful. To view this, log in to your
running instance and view the volume that is now attached:
sudo fdisk -l /dev/vdb

www.it-ebooks.info

http://www.it-ebooks.info/

Nova Volumes

162

4. We should see 5 GB of space available for the running instance. At this moment,
this is like adding a fresh disk to a system, so you need to format it for use and then
mount it as part of your filesystem.
sudo mkfs.ext4 /dev/vdb

sudo mount /dev/vdb /mnt

df -h

We should now see the newly attached disk available at /mnt:
Filesystem Size Used Avail Use% Mounted on
/dev/vda 1.4G 602M 733M 46% /
devtmpfs 248M 12K 248M 1% /dev
none 50M 216K 50M 1% /run
none 5.0M 0 5.0M 0% /run/lock
none 248M 0 248M 0% /run/shm
/dev/vdb 5.0G 204M 4.6G 5% /mnt

Only format the volume if this is the first time you
have used it.

Carry out the following steps to attach a volume to an instance using Nova Client:

1. If you have no instance running, spin one up. Once running, run the nova list
command and note the instance ID.
Source in credentials

. keystonerc

nova list

The following output is generated:

2. Using the instance ID, we can attach the volume to our running instance, as follows:
nova volume-attach ccd477d6-e65d-4f8d-9415-c150672c52bb 4 /dev/vdc

/dev/vdc is specified here so as not to conflict with
/dev/vdb, as the former refers to the same instance
described previously.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

163

3. The preceding command will output the name of the volume when successful. To
view this, log in to your running instance and view the volume that is now attached:
sudo fdisk -l /dev/vdc

4. We should see 5 GB of space available for the running instance. At this moment,
this is like adding a fresh disk to a system, so you need to format it for use and then
mount it as part of your filesystem.
sudo mkfs.ext4 /dev/vdc

sudo mkdir /mnt1

sudo mount /dev/vdc /mnt1

df -h

We should now see the newly attached disk available at /mnt1:

Filesystem Size Used Avail Use% Mounted on
/dev/vda 1.4G 602M 733M 46% /
devtmpfs 248M 12K 248M 1% /dev
none 50M 216K 50M 1% /run
none 5.0M 0 5.0M 0% /run/lock
none 248M 0 248M 0% /run/shm
/dev/vdb 5.0G 204M 4.6G 5% /mnt
/dev/vdc 5.0G 204M 4.6G 5% /mnt1

How it works...
Attaching a nova-volume is no different from plugging in a USB stick on your own computer—
we attach it, (optionally) format it, and mount it.

Under euca2ools, the command euca-attach-volume takes the following syntax:

euca-attach-volume -i instance_id -d device volume_id

instance_id is the ID returned from euca-describe-instances for the instance we
want to attach the volume to. device is the name of the device within the instance that
we will use to mount the volume. volume_id is the ID returned from euca-describe-
volumes for the volume we want to use to attach.

Under Nova Client, the option volume-attach takes the following syntax:

nova volume-attach instance_id volume_id device

instance_id is the ID returned from nova list for the instance that we want to attach the
volume to. volume_id is the name of the device within the instance that we will use to mount
the volume that can be retrieved using nova volume-list. device is the device that will be
created on our instance that we use to mount the volume.

www.it-ebooks.info

http://www.it-ebooks.info/

Nova Volumes

164

Detaching volumes from an instance
As Nova Volumes are persistent storage and the best way of thinking of them is as a USB
drive, this means you can only attach them to a single computer at a time. When you remove
it from the computer, you can then move it to another one and attach it. The same principle
works with Nova Volumes. To detach a volume, we use another euca2ools aptly named
euca-detach-volume, or from Nova Client, the option volume-detach.

Getting ready
To begin with, ensure you are logged in to the Ubuntu client that has access to euca2ools or
Nova Client tools. These packages can be installed using the following command:

sudo apt-get update

sudo apt-get-y install euca2ools python-novaclient

How to do it...
Carry out the following steps to detach a volume by using euca2ools:

1. First, we identify the volumes attached to running instances, by running the
command euca-describe-volumes, as follows:
euca-describe-volumes

2. This brings back the following output:
VOLUME vol-00000003 5 nova in-use 2012-07-06T11:09:23.000Z
ATTACHMENT vol-00000003 i-00000009 /dev/vdb attached |
VOLUME vol-00000004 5 nova in-use 2012-07-06T11:20:50.000Z
ATTACHMENT vol-00000004 i-00000009 /dev/vdc attached

3. In a shell on the running instance that has the volume mounted, we must first
unmount the volume as follows:
sudo umount /mnt

4. Back on the Ubuntu client where euca2ools is installed, we can now detach this
volume, as follows:
euca-detach-volume -i i-00000009 vol-00000003

5. We are now free to attach this to another running instance, with data preserved.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

165

Carry out the following steps to detach a volume using Nova Client:

1. First, we identify the volumes attached to running instances, by running the
command euca-describe-volumes, as follows:
nova volume-list

2. This brings back the following output:

3. In a shell on the instance that has the volume mounted, we must first unmount it as
follows (if using the example before, this is on /mnt1):
sudo umount /mnt1

4. Back on the Ubuntu client, where Nova Client is installed, we can now detach this
volume as follows:
nova volume-detach ccd477d6-e65d-4f8d-9415-c150672c52bb 4

5. We are now free to attach this to another running instance, with data preserved.

How it works...
Detaching nova-volume is no different to removing a USB stick from a computer. We first
unmount the volume from our running instance. Then, we detach the volume from the running
instance using euca-detach-volume from euca2ools or nova volume-detach from
Nova Client.

euca-detach-volume has the following syntax:

euca-detach-volume -i instance_id volume_id

instance_id is the ID returned from euca-describe-instances for the instance we
want to detach the volume from. volume_id is the ID returned from euca-describe-
volumes for the volume we want to detach.

nova volume-detach has the following syntax:
nova volume-detach instance_id volume_id

instance_id is the ID from the Attached to column returned from nova volume-list for
the instance we want to detach the volume from. volume_id is the ID returned from euca-
describe-volumes for the volume we want to detach.

www.it-ebooks.info

http://www.it-ebooks.info/

Nova Volumes

166

Deleting volumes
At some point, you will no longer need the volumes you have created. To remove the volumes
from the system completely, so they are no longer available, we simply pull out another tool
from euca2ools, euca-delete-volume, or invoke the volume-delete option from
Nova Client.

Getting ready
Ensure you are logged in to the Ubuntu host where euca2ools is installed and have sourced in
your OpenStack environment credentials.

How to do it...
To delete a volume using euca2ools, carry out the following steps:

1. First, we list the volumes available to identify the volume we want to delete, as
follows:
euca-describe-volumes

2. We now simply use the volume ID to delete this from the system, as follows:
euca-delete-volume vol-00000003

3. On deletion, the volume you have deleted will be printed on screen.

To delete a volume using Nova Client, carry out the following steps:

1. First, we list the volumes available to identify the volume we want to delete,
as follows:
nova volume-list

2. We now simply use the volume ID to delete this from the system, as follows:
nova volume-delete 4

3. On deletion, the volume you have deleted will be printed on screen.

How it works...
Deleting images removes the LVM volume from use within our system. To do this, we
simply specify the name of the volume as a parameter to euca-delete-volume, if using
euca2ools, or the ID as a parameter to nova volume-delete (when using Nova Client), first
ensuring that the volume is not in use.

www.it-ebooks.info

http://www.it-ebooks.info/

9
Horizon OpenStack

Dashboard
In this chapter we will cover:

 f Installing OpenStack Dashboard

 f Keypair management in OpenStack Dashboard

 f Security group management by using OpenStack Dashboard

 f Launching instances by using OpenStack Dashboard

 f Terminating instances by using OpenStack Dashboard

 f Connecting to instances by using OpenStack Dashboard and VNC

 f Adding new tenants by using OpenStack Dashboard

 f User management by using OpenStack Dashboard

Introduction
Managing our OpenStack environment through a command-line interface allows us complete
control of our cloud environment, but having a GUI that operators and administrators can
use to manage their environments and instances makes this process easier. OpenStack
Dashboard, known as Horizon, provides this GUI and is a web service that runs from an
Apache installation, using Python's Web Service Gateway Interface (WSGI) and Django,
a rapid development web framework.

www.it-ebooks.info

http://www.it-ebooks.info/

Horizon OpenStack Dashboard

168

With OpenStack Dashboard installed, we can manage all the core components of our
OpenStack environment.

Installation of OpenStack Dashboard under Ubuntu gives a slightly
different look and feel than a stock installation of Dashboard. The
functions remain the same, although Ubuntu adds an additional
feature to allow the user to download environment settings for Juju.

Installing OpenStack Dashboard
Installation of OpenStack Dashboard is straightforward when using Ubuntu's
package repository.

Getting ready
To begin with, ensure that you're logged in to our OpenStack Compute host or an appropriate
server on the network that has access to our OpenStack environment.

How to do it...
To install OpenStack Dashboard, we simply install the required packages and dependencies
by following the ensuing steps:

1. Install the required packages as follows:
sudo apt-get update

sudo apt-get -y install openstack-dashboard novnc nova-consoleauth
nova-console

2. We can configure OpenStack Dashboard by editing the /etc/openstack-
dashboard/local_settings.py file, thus:
OPENSTACK_HOST = "172.16.0.1"
OPENSTACK_KEYSTONE_URL = "http://%s:5000/v2.0" % OPENSTACK_HOST
OPENSTACK_KEYSTONE_DEFAULT_ROLE = "Member"

3. Restart the Apache service to pick up our changes, as follows:
sudo service apache2 restart

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

169

4. Now we need to configure Nova to use our VNC proxy service that can be used
through our OpenStack Dashboard interface. To do so, add the following lines
to /etc/nova/nova.conf:
--novnc_enabled=true
--novncproxy_base_url=
http://172.16.0.1:6080/vnc_auto.html
--vncserver_proxyclient_address=172.16.0.1
--vncserver_listen=172.16.0.1

5. Restart nova-api to pick up the changes:
sudo restart nova-api

sudo restart nova-compute

sudo service apache2 restart

How it works...
Installation of OpenStack Dashboard, Horizon, is simple when using Ubuntu's
package repository. As it uses the Python RAD web environment, Django, and WSGI,
OpenStack Dashboard can run under Apache. So, to pick up our changes, we restart
our Apache 2 service.

We also include the VNC Proxy service. It provides us with a great feature to access our
instances over the network, through the web interface.

Keypair management in OpenStack
Dashboard

Keypairs allow users to connect SSH to our Linux instances, so users must have keypairs.
Users have to manage keypairs through OpenStack Dashboard for their own setup. Usually,
this is the first task a new user has to do when given access to our OpenStack environment.

Getting ready
Load a web browser, point it to our OpenStack Dashboard address at http://172.16.0.1/,
and log in as the demo user with the password openstack.

www.it-ebooks.info

http://www.it-ebooks.info/

Horizon OpenStack Dashboard

170

How to do it...
Management of the logged-in user's keypairs is achieved with the steps discussed in the
following sections.

Adding keypairs
Keypairs can be added by performing the following steps:

1. A new keypair can be added to our system by using the Access & Security tab,
so click on it:

2. We will then be presented with a screen allowing us access to security settings and
keypair management. Under Keypairs, there will be a list of keypairs that we can use
to access our instances. To create a new keypair, click on the Create Keypair button:

3. We will be presented with a screen that asks us to name the keypair, so name this
appropriately (with no spaces), and then click on the Create Keypair button:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

171

4. Once a keypair is created, we will be asked to save the private key portion of our
keypair to disk. A private key cannot be recreated, so keep this safe and store it
on the filesystem.

5. Click on the Access & Security tab to return to our list of keypairs. We will now see
the newly created keypair listed. When launching instances, we can select this new
keypair and only gain access to it by using the private key that we have stored locally:

www.it-ebooks.info

http://www.it-ebooks.info/

Horizon OpenStack Dashboard

172

Deleting keypairs
Keypairs can be deleted by performing the following steps:

1. When keypairs are no longer required, we can delete them from our OpenStack
environment. To do so, click on the Access & Security tab on the left of our screen.

2. We will then be presented with a screen allowing us access to security settings and
keypair management. Under Keypairs, there will be a list of keypairs that we can
use to access our instances. To delete a keypair from our system, select the Delete
Keypair button for the keypair that we want to delete:

3. We will be presented with a confirmation dialog box:

4. Once confirmed, the keypair will be deleted.

Importing Keypairs
To import keypairs, perform the following steps:

1. We can import keypairs that have been created in our traditional Linux- and Unix-
based environments into our OpenStack setup. If you don't have one already, run the
following from your Linux- or other Unix-based host.
ssh-keygen -t rsa -N ""

2. This will produce two files on our client:

 � .ssh/id_rsa

 � .ssh/id_rsa.pub

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

173

3. The .ssh/id_rsa file is our private key and has to be protected, as it is the only key
that matches the public portion of the keypair, .ssh/id_rsa.pub.

4. We can import this public key to use in our OpenStack environment, so that when an
instance is launched, the public key is inserted into our running instance. To import
the public key, ensure that you're at the Access & Security screen, and then under
Keypairs, click on the Import Keypair button:

5. We will be presented with a screen that asks us to name our keypair and paste
the contents of our public key. So name the keypair, and then copy and paste
the contents of the public key into the space—for example, the contents of
.ssh/id_rsa.pub. Once entered, click on the Import Keypair button:

www.it-ebooks.info

http://www.it-ebooks.info/

Horizon OpenStack Dashboard

174

6. Once completed, we will be presented with the list of keypairs available to that user,
including our imported keypair:

How it works...
Keypair management is important, as it provides a consistent and secure approach for
accessing our running instances. Allowing the user to create, delete, and import keypairs to
use within his/her tenants allows them to create secure systems.

OpenStack Dashboard allows a user to create keypairs in a very simple way. The user must
ensure, though, that the private key that he/she downloads is kept secure.

Deleting keypairs is very straightforward, but the user must remember that if he/she is
deleting keypairs and there are running instances, the user will no longer be able to access
the running system—every keypair created is unique, even if you name the keypairs the same.

Importing keypairs has the advantage that we can use our existing secure keypairs that
we have been using outside of OpenStack within our new private cloud environment. This
provides a consistent user experience when moving from one environment to another.

Security group management by using
OpenStack Dashboard

Security groups are network rules that allow instances in one tenant (project) to be kept
separate from other instances in another. Managing Security Group rules for our OpenStack
instances is done as simply as possible with OpenStack Dashboard.

Getting ready
Load a web browser, point it to our OpenStack Dashboard address at http://172.16.0.1/,
and log in as the demo user with the password openstack.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

175

How to do it...
To administer security groups under OpenStack Dashboard, carry out the steps discussed in
the following sections.

Creating a security group
To create a security group, perform the following steps:

1. A new keypair is added to our system by using the Access & Security tab, so click on it:

2. We will then be presented with a screen allowing us access to security settings and
keypair management. Under Security Groups, there will be a list of security groups
that can be used when we launch our instances. To create a new Security Group, click
on the Create Security Group button:

3. We will be presented with a screen that asks us to name the security group and
provide a description. The name must have no spaces:

4. Once a new security group is created, the list of available security groups will
appear on screen.

www.it-ebooks.info

http://www.it-ebooks.info/

Horizon OpenStack Dashboard

176

Editing security groups to add and remove rules
To add and remove rules, security groups can be edited by performing the following steps:

1. When we have created a new security group, or wish to modify the rules in an existing
security group, we can click on the Edit Rules button for that particular security group:

2. We will then be asked to provide the rule information. As an example, we will add in a
security group rule that allows HTTP and HTTPS access from anywhere. To do this, we
choose the following:

Each time you add a rule, you will be sent back to the Security
Group listing. Simply click on the Edit Rules button for the
webserver group to add it again in both HTTP and HTTPS access.

3. Note that we can remove rules from here too. Simply select the rule that we no longer
require and click on the Delete Rule button. We will be asked to confirm
this removal.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

177

Deleting security groups
Security groups can be deleted by performing the following steps:

1. Security groups are deleted by selecting the security group that we want to remove
and clicking on the Delete Security Groups button:

2. You will be asked to confirm this. Clicking on OK, removes the security group and
associated access rules.

You will not be able to remove a security group whilst an
instance with that assigned security group is running.

How it works...
Security groups are important to our OpenStack environment, as they provide a consistent
and secure approach for accessing our running instances. By allowing the users to create,
delete, and amend security groups to use within their tenants allows them to create
secure environments.

Security groups are associated with instances on creation, so we can't add a new security
group to a running instance. We can, however, modify the rules assigned to a running
instance. For example, suppose an instance was launched with only the Default security
group. The default security group which we have set up, only has TCP port 22 and ability to
ping the instance. If we require access to TCP port 80, we either have to add this rule to the
default security group or relaunch the instance with a new security assigned to it, to allow
TCP port 80.

Modifications to security groups come into effect immediately, and
any instance assigned with that security group will have those new
rules associated with it.

www.it-ebooks.info

http://www.it-ebooks.info/

Horizon OpenStack Dashboard

178

Launching instances by using
OpenStack Dashboard

Launching instances becomes a simple process, using OpenStack Dashboard. We simply
select our chosen image, choose the size of the instance, and then launch it.

Getting ready
Load a web browser, point it to our OpenStack Dashboard address at http://172.16.0.1/,
and log in as the demo user with the password openstack (as created in the Adding users
recipe in Chapter 3, Keystone OpenStack Identity Service):

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

179

How to do it...
To launch an instance by using the OpenStack Dashboard interface, carry out the
following steps:

1. Navigate to the Images & Snapshots tab and select an appropriate image to launch,
for example, the Ubuntu 12.04 i386 Server image:

2. Click on the Launch button under the Actions column of the image to be launched.

www.it-ebooks.info

http://www.it-ebooks.info/

Horizon OpenStack Dashboard

180

3. A dialog box will appear requesting a name for the instance (for example, horizon1).
Choose an instance type of m1.tiny. Select demo from the Keypair drop-down list.
Then, check the default checkbox under Security Groups:

4. Once selected, we can click on the Launch Instance button.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

181

5. We will be returned to the Instances & Volumes tab that shows the instance in a
Build state, which will eventually change to Active:

If the display hasn't refreshed, click on the Images & Volumes
tab to refresh the information manually.

How it works...
Launching instances from Horizon—OpenStack Dashboard—is done in two stages:

1. Selecting the appropriate image from the Images tab.

2. Choosing the appropriate values to assign to the instance.

The Instances tab shows the running instances under our cookbook project.

You can also see an overview of what is running in our environment
by clicking on the Overview tab.

Terminating instances by using OpenStack
Dashboard

Terminating instances is very simple when using OpenStack Dashboard.

Getting ready
Load a web browser, point it to our OpenStack Dashboard address at http://172.16.0.1/,
and log in as the demo user with the password openstack.

www.it-ebooks.info

http://www.it-ebooks.info/

Horizon OpenStack Dashboard

182

How to do it...
To terminate instances by using OpenStack Dashboard, carry out the following steps:

1. Select the Instances & Volumes tab and choose the instance to be terminated:

2. We will be presented with a confirmation screen. Click on OK to terminate the
selected instance:

3. We will be presented with the Instances & Volumes screen with a confirmation that
the instance has been terminated successfully.

How it works...
Terminating instances by using OpenStack Dashboard is easy. We simply select our running
instance and click on the Terminate Instances button, which is highlighted when an instance
is selected. After clicking on the Terminate Instances button, we will be asked to confirm this
action to minimize the risk of accidentally terminating an instance.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

183

Connecting to instances by using
OpenStack Dashboard and VNC

OpenStack Dashboard has a very handy feature that allows a user to connect to our running
instances through a VNC session within our web browser. This gives us the ability to manage
our instance without invoking an SSH session separately.

Getting ready
Load up a web browser, point it to our OpenStack Dashboard address at
http://172.16.0.1/, and log in as the demo user with the password openstack.

How to do it...
To connect to a running instance by using VNC through the web browser, carry out the
following steps:

1. Select the Instances & Volumes tab and choose an instance to which we want
to connect.

2. Next to the Edit Instance button is a down arrow, which reveals more options.
Click on it:

www.it-ebooks.info

http://www.it-ebooks.info/

Horizon OpenStack Dashboard

184

3. Select the VNC Console option. This will take you to a console screen, which will allow
you to log in to your instance:

Your instance must support local logins. Many Linux cloud images
expect a user to authenticate by using SSH Keys.

How it works...
Connecting through our web browser uses a VNC proxy session, which was configured by
using the nonce, nova-consoleauth, and nova-console packages, as described in
the installation section. Only browsers that support WebSocket connections are supported.
Generally, this can be any modern browser with HTML5 support.

Adding new tenants by using
OpenStack Dashboard

OpenStack Dashboard is a lot more than just an interface to our instances. It allows an
administrator to configure environments, users, and tenants.

Adding new tenants (projects) that users can be members of is achieved quite simply in
OpenStack Dashboard. For a VLAN-managed environment, it also involves assigning an
appropriate private network to that new tenant by using the console. To do this, we must log
in to OpenStack Dashboard as a user with admin privileges and also log in to Shell on our
OpenStack Controller API server.

Getting ready
Load a web browser, point it to our OpenStack Dashboard address at http://172.16.0.1/,
and log in as the admin user with the password openstack. Log in to the same box, over
SSH, where we can run the nova-manage command.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

185

How to do it...
To add a new tenant to our OpenStack environment, carry out the following steps:

1. When we log in as a user with admin privileges, an extra tab called Admin appears.
Clicking on this tab shows the System Panel options. This tab allows us to configure
our OpenStack environment:

2. To manage tenants, click on the Projects option listed under System Panel:

3. Then we will be presented with a list of tenants in our OpenStack environment. To
create a new tenant, click on the Create New Project button.

www.it-ebooks.info

http://www.it-ebooks.info/

Horizon OpenStack Dashboard

186

4. We will then be presented with a form that asks for the name of the tenant and a
description. Enter horizon as our tenant, and enter a description:

5. Ensure that the tenant is enabled by placing a tick in the Enabled checkbox, and then
click on the Create Project button.

6. We will be presented with the list of tenants that are now available and a message
saying that the horizon tenant was created successfully and asking us to make a
note of the new Tenant ID.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

187

Only for a VLAN-managed network

If our OpenStack environment has been set up by using
VlanManager in /etc/nova/nova.conf (the default when
nothing is specified), run the following command in Shell on our
OpenStack Controller API server:
sudo nova-manage network create --label=horizon
--num_networks=1 --network_size=64 --vlan=101
--bridge_interface=eth2 --project_id=900dae01996
343fb946b42a3c13a4140 --fixed_range_v4=10.2.0.0/8

This creates an IP range on a specific VLAN that we have associated with our horizon tenant.
Once successful, our new tenant is available to use.

How it works...
OpenStack Dashboard is a feature-rich interface that complements the command-line options
available to you when managing our OpenStack environment. This means we can simply
create a tenant (Ubuntu's interface refers to this as a project) which users can belong to,
within OpenStack Dashboard.

When creating new tenants under a VlanManager-configured OpenStack network, we assign
an IP address range and specific VLAN ID to this tenant. If we assign a new VLAN, ensure
you configure your switches accordingly, so that the private network can communicate by
using this new VLAN ID. Note that we use the following parameters with the nova-manage
command when configuring a network to match our new tenant:

 f --label=horizon

 f --vlan=101

 f --project_id=900dae01996343fb946b42a3c13a4140

What we have done is name this private network appropriately, matching our tenancy. We
have created a new VLAN so that traffic is encapsulated in a new VLAN, separating this traffic
from other tenants. We finally specified the ID of the tenancy that was returned when we
created the tenant through OpenStack Dashboard.

www.it-ebooks.info

http://www.it-ebooks.info/

Horizon OpenStack Dashboard

188

User management by using OpenStack
Dashboard

OpenStack Dashboard gives us the ability to conduct user management through the web
interface. This allows an administrator to easily create and amend users within an OpenStack
environment. To manage users, you must log in as a user that is a member of the admin role.

Getting ready
Load a web browser, point it to our OpenStack Dashboard address at http://172.16.0.1/,
and log in as the admin user with the password openstack.

How to do it...
User management under OpenStack Dashboard is achieved by carrying out the steps
discussed in the following sections.

Adding Users
To add users, perform the following steps:

1. Under Admin System Panel, click on the Users option to bring back a list of users on
the system:

2. To create a new user, select the Create User button.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

189

3. We will be presented with a form that asks for username details. Enter the name of a
user, the e-mail address of that user, and the password for that user. In the example
shown in the following screenshot, we create a user named test, set openstack as
the password, and assign that user to the horizon tenant:

4. We will then be returned to the list of users that are part of our OpenStack environment.
Then we will see a message saying that the user was created successfully.

Deleting users
To delete users, perform the following steps:

1. Under Admin System Panel, click on the Users option to bring back a list of users
on the system.

2. We will be presented with a list of users in our OpenStack cloud setup. Next to the
Edit button for the user that we want to remove, you can find a drop-down menu.
Select this to reveal an option called Delete User:

www.it-ebooks.info

http://www.it-ebooks.info/

Horizon OpenStack Dashboard

190

3. Selecting this brings up a confirmation dialog box. Clicking on the Delete User button
will remove the user from the system:

Updating user details and passwords
To update user details and passwords, perform the following steps:

1. Under Admin System Panel, click on the Users option to bring back a list of users on
the system.

2. To change a user's password, e-mail address, or primary project (tenant) click on the
Edit button for that user.

3. This brings up a dialog box asking for the relevant information. When the information
is filled up, click on the Update User button:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

191

Adding users to tenants
To add users to tenants, perform the following steps:

1. Under Admin System Panel, click on the Projects option to bring back a list of
tenants on the system:

2. To add a user to a tenant, for example horizon, click on the drop-down list next to
the Edit Project button to reveal further options:

3. Click on the Modify Users option to bring up a list of users associated with a tenant
as well as a list of users we can add to that tenant:

www.it-ebooks.info

http://www.it-ebooks.info/

Horizon OpenStack Dashboard

192

4. To add a new user to the list, simply click on the Add To Project button for that user:

5. We will then be asked to assign the role to that user in this tenant. Once the role is
selected, simply click on the Add button:

6. Then, we will be presented with a success message saying that our new user has
been added to the horizon tenant. This user can now launch instances in different
tenants when he/she logs in.

Removing users from tenants
To remove users from tenants, perform the following steps:

1. Under Admin System Panel, click on the Projects option to bring back a list of
tenants on the system.

2. To remove a user from a tenant, for example horizon, click on the drop-down list
next to the Edit Project button, to reveal further options.

3. Click on the Modify Users option to bring up a list of users associated with a tenant
as well as a list of users we can add to that tenant:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

193

4. To remove a user from this tenant, click on the Remove User button for that
particular user:

5. This brings back a dialog box that asks us to confirm our action. Clicking on the
Remove User button removes that user from the tenant:

www.it-ebooks.info

http://www.it-ebooks.info/

Horizon OpenStack Dashboard

194

How it works...
OpenStack Dashboard is a feature-rich interface that complements the command-line options
available to us when managing our cloud environment. The interface has been designed so
that the functions available are as intuitive as possible to the administrator. This means that
we can easily create users, modify their membership within tenants, update passwords, and
remove them from the system altogether.

www.it-ebooks.info

http://www.it-ebooks.info/

10
OpenStack Networking

In this chapter, we will cover:

 f Configuring Flat networking

 f Configuring Flat networking with DHCP

 f Configuring VLAN Manager networking

 f Configuring per-project (tenant) IP ranges

 f Automatically assigning fixed networks to tenants

 f Modifying a tenant's fixed network

 f Manually associating floating IPs to instances

 f Manually disassociating floating IPs from instances

 f Automatically assigning floating IPs

Introduction
OpenStack supports three modes of networking in the current Essex release. These are Flat
networking, Flat networking with DHCP, and VLAN Manager. The latter, VLAN Manager, is the
default in OpenStack and allows for a multi-tenant environment where each of those separate
tenants is assigned an IP address range and VLAN tag that ensures project separation. In the
Flat networking modes, isolation between tenants is done at the Security Group level. In all of
the available modes, OpenStack presents two networks associated with an instance: a private
address range and a public address range. The private address, also referred to as the fixed IP
address, is the address an instance gets assigned for the lifetime of that instance. The public
address, also referred to as the floating IP address, is an address an instance gets that makes
that instance available to the public, (or in many private cloud installations, routed to the rest
of your network). This public (floating) address can be associated with or disassociated from
an instance at any time, meaning that you can assign any particular IP on your public (floating)
range to any instance. Network Address Translation (NAT) handles the communication flow of
traffic to and from the instances, as it traverses the public and private network spaces.

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack Networking

196

Configuring Flat networking
In Flat networking, the IP addresses for our instances are injected from a defined subnet of
IP addresses at launch. To make this work, a network bridge is configured the same on each
compute and network host in our cloud environment.

Only Linux distributions that keep their network information
under /etc/network/interfaces support Flat networking.

Getting ready
To begin with, ensure you're logged into the OpenStack API server.

If using the openstack1 host created in Chapter 1, Starting OpenStack Compute, we will
have three interfaces in our virtual instance:

 f eth0 is a NAT to the host running VirtualBox

 f eth1 is our floating (public) network (172.16.0.0/16)

 f eth2 is our fixed (private) network (10.0.0.0/8)

In a physical production environment, that first interface wouldn't be present and references
to this NATed eth0 in the following section can be ignored.

How to do it...
To configure our OpenStack environment to use Flat networking, carry out the following steps:

1. OpenStack requires bridging in order for any of the network modes to work.
The bridge tools are installed as dependencies when installing the OpenStack
nova-network package, but if they aren't installed you can issue the
following commands:
sudo apt-get update

sudo apt-get -y install bridge-utils

2. We first need to configure our network bridge (br100) by editing /etc/network/
interfaces, as follows:
The primary network interface
auto eth0
iface eth0 inet dhcp

eth1 public
auto eth1

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

197

iface eth1 inet static
 address 172.16.0.1
 netmask 255.255.0.0
 network 172.16.0.0
 broadcast 172.16.255.255

eth2 private
auto br100
iface br100 inet manual
 bridge_ports eth2
 bridge_stp off
 bridge_maxwait 0
 bridge_fd 0
 up ifconfig eth2 up

3. We then restart our network service to pick up the changes, as follows:
sudo /etc/init.d/networking restart

4. We now configure OpenStack Compute to use the new bridged interface as part of
our flat network. Add the following lines to /etc/nova/nova.conf:
--network_manager=nova.network.manager.FlatManager
--flat_network_bridge=br100
--flat_interface=eth2
--public_interface=eth1

5. Restart the required OpenStack Compute services to pick up the changes:
sudo restart nova-compute

sudo restart nova-network

6. We now create a private (fixed) network that OpenStack Compute can use, as follows:
sudo nova-manage network create
 --fixed_range_v4=10.0.1.0/24 --label flat
 --bridge br100

7. With this in place, we now have a bridge from our eth2 interface and our internal
network assigned to our instances. To ensure this works in a multi-network device
host, run the following command to enable IP forwarding:
sudo sysctl -w net.ipv4.ip_forward=1

8. We can now create our floating public range, which we will use to connect to our
running instances, as follows:
sudo nova-manage floating create --ip_range=172.16.1.0/24

9. When an instance spawns now, an address is injected from our address space into
our instance. We can then access this, as before, by assigning a public floating IP to
this instance, which associates this IP address with our instance's private IP address.

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack Networking

198

How it works...
FlatManager networking is useful for small proof-of-concept environments. They only work
for Linux systems that support networking set in /etc/network/interfaces and are
limited to a single network and project.

In order to make FlatManager work, we must manually configure our hosts with the same
bridging, which is set to br100, as specified in /etc/nova/nova.conf:

--flat_network_bridge=br100

When our instance spawns, it will be given an address in the range that we have specified:
10.0.1.0 - 10.0.1.254, which we specified with the following command:

nova-manage network create --fixed_range_v4=ip_range --label label
 --bridge bridge

Note that we also don't assign an IP address to the interface that acts as our bridge—in our
case, eth2.

Configuring Flat networking with DHCP
In Flat networking with DHCP, the IP addresses for our instances are assigned from a running
DHCP service on the OpenStack Compute host. This service is provided by dnsmasq. As with
Flat networking, a bridge must be configured manually in order for this to function.

Getting ready
To begin with, ensure you're logged in to the OpenStack API server.

If using the openstack1 host created in Chapter 1, Starting OpenStack Compute, we will
have three interfaces in our virtual instance:

 f eth0 is a NAT to the host running VirtualBox

 f eth1 is our floating (public) network (172.16.0.0/16)

 f eth2 is our fixed (private) network (10.0.0.0/8)

In a physical production environment, that first interface wouldn't be present, and references
to this NATed eth0 in the following section can be ignored.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

199

How to do it...
To configure our OpenStack environment to use Flat networking with DHCP, carry out the
following steps:

1. OpenStack requires bridging in order for any of the network modes to work. The
bridge tools are installed as dependencies when installing the OpenStack nova-
network package, but if they aren't installed you can issue the following commands:
sudo apt-get update

sudo apt-get -y install bridge-utils

2. We first need to configure our network bridge (br100) by editing /etc/network/
interfaces, as follows:
The primary network interface

auto eth0
iface eth0 inet dhcp
eth1 public
auto eth1
iface eth1 inet static
 address 172.16.0.1
 netmask 255.255.0.0
 network 172.16.0.0
 broadcast 172.16.255.255

eth2 private
auto br100
iface br100 inet manual
 bridge_ports eth2
 bridge_stp off
 bridge_maxwait 0
 bridge_fd 0
 up ifconfig eth2 up

3. We then restart our network service to pick up the changes, as follows:
sudo /etc/init.d/networking restart

4. We now configure OpenStack Compute to use the new bridged interface as part of
our flat network. Add the following lines to /etc/nova/nova.conf:
--dhcpbridge_flagfile=/etc/nova/nova.conf
--dhcpbridge=/usr/bin/nova-dhcpbridge
--network_manager=nova.network.manager.FlatDHCPManager
--flat_network_dhcp_start=10.0.1.2
--flat_network_bridge=br100
--flat_interface=eth2
--flat_injected=False
--public_interface=eth1

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack Networking

200

5. Restart the required OpenStack Compute services, to pick up the changes:
sudo restart nova-compute

sudo restart nova-network

6. In order to separate private ranges per project (tenant), we get the ID of our tenant,
that we will use when creating the network. On a client machine with the keystone
client installed, run the following command:
keystone tenant-list

7. We now create a private (fixed) network—that OpenStack Compute can use—for that
particular tenant, as follows:
sudo nova-manage network create
 --fixed_range_v4=10.0.1.0/24
 --label cookbook --bridge br100
 --project 950534b6b9d740ad887cce62011de77a

8. We can now create our floating public range that we will use to connect to our running
instances. We do this as follows:
sudo nova-manage floating create --ip_range=172.16.1.0/24

9. With this in place, we now have a bridge from our eth2 network and our internal
network assigned to our instances. To ensure this works in a multi-network device
host, run the following command to enable IP forwarding:
sudo sysctl -w net.ipv4.ip_forward=1

10. When an instance spawns now, a private address is injected from our fixed address
range into our instance. We then access this as before, by assigning a public floating
IP to this instance, which associates this floating IP address with our instance's fixed
IP address.

How it works...
FlatDHCPManager networking is a common option for networking, as it provides a flat
network that is only limited by the IP address range assigned. It doesn't require a Linux
operating system and the /etc/network/interfaces file in order to operate correctly
through the use of standard DHCP for assigning addresses.

In order to make FlatDHCPManager work, we manually configure our hosts with the same
bridging, which is set to br100, as specified in /etc/nova/nova.conf:

--flat_network_bridge=br100

Once set up, we configure our network range, where we can specify in our /etc/nova/
nova.conf configuration file the start of this range that our instances get when they start:

--flat_network_dhcp_start=10.0.1.2

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

201

When creating the fixed (private) range using nova-manage network create, we assign
this fixed range to a particular tenant (project). This allows us to have specific IP ranges that
are isolated from different projects in a multi-tenant environment.

When our instance boots up, our dnsmasq service that is running on our nova-network
host assigns an address from its dhcp pool to the instance.

Also note that we don't assign an IP address to the interface that we connect to our bridge, in
our case eth2. We simply bring this interface up so we can bridge to it (and therefore forward
traffic to the instance interfaces that are bridged to it).

Configuring VLAN Manager networking
VLAN Manager networking is the default networking mode in OpenStack. When VLAN mode
is configured, each project (or tenancy) has its own VLAN and network assigned to it. Any
intermediary physical switches must however support 802.1q VLAN tagging, for this to operate.

Virtual switches in our sandbox environment support VLAN tagging.

Getting ready
To begin with, ensure you're logged in to the OpenStack API server.

If using the openstack1 host created in Chapter 1, Starting OpenStack Compute, we will
have three interfaces in our virtual instance:

 f eth0 is a NAT to the host running VirtualBox

 f eth1 is our floating (public) network (172.16.0.0/16)

 f eth2 is our fixed (private) network (10.0.0.0/8)

In a physical production environment, that first interface wouldn't be present, and references
to this NATed eth0 in the following section can be ignored.

How to do it...
1. OpenStack requires bridging in order for any of the network modes to work. The bridge

tools are installed as dependencies when installing the OpenStack nova-network
package, but if they aren't installed you can issue the following commands. As we are
also configuring VLANs, the required package to support VLANs must also be installed:
sudo apt-get update

sudo apt-get -y install bridge-utils vlan

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack Networking

202

2. The networking on our host is as follows:
The primary network interface
auto eth0
iface eth0 inet dhcp

eth1 public
auto eth1
iface eth1 inet static
 address 172.16.0.1
 netmask 255.255.0.0
 network 172.16.0.0
 broadcast 172.16.255.255

eth2 private
auto eth2
iface eth2 inet manual
 up ifconfig eth2 up

3. We then restart our network service to pick up the changes, as follows:
sudo /etc/init.d/networking restart

4. By default, if we don't specify a Network Manager in our /etc/nova/nova.conf
file, OpenStack Compute defaults to VLAN networking. To explicitly state this, so there
are no ambiguities, we put the following in /etc/nova/nova.conf specifying our
VLAN details:
--network_manager=nova.network.manager.VlanManager
--vlan_start=100
--vlan_interface=eth2
--public_interface=eth1
--dhcpbridge_flagfile=/etc/nova/nova.conf
--dhcpbridge=/usr/bin/nova-dhcpbridge

5. Restart the required OpenStack Compute services, to pick up the changes:
sudo restart nova-compute

sudo restart nova-network

6. In order to separate private ranges per project (tenant), we get the ID of our tenant
that we will use when creating the network. On a client machine with the keystone
client installed, run the following command:
. keystonerc

keystone project-list

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

203

7. We now create a private network that OpenStack can use, which we are assigning to
a project, as follows:
sudo nova-manage network create
 --fixed_range_v4=10.0.3.0/24
 --label cookbook --vlan=100
 --project 950534b6b9d740ad887cce62011de77a

8. Once created, we can configure our public network address space, which we will use
to connect to our instances:
sudo nova-manage floating create --ip_range=172.16.1.0/24

9. When we launch an instance now, the private address is assigned to the VLAN
interface. We can assign floating IP addresses to this instance, and they get
forwarded to the instance's internal private IP address.

How it works...
VLAN Manager networking is the default and, for a private cloud environment in networks
accustomed to VLANs, this option is the most flexible. It allows for per-project and secure
networking by using VLANs. If you do not have a --network_manager flag in your /etc/
nova/nova.conf file, OpenStack Compute will default to VlanManager.

Creating the network is no different in any of the managers; in this instance, with
VlanManager, the private network is assigned to a VLAN that is specified in the --vlan=100
option. We then associate this network and VLAN with our cookbook project, by specifying
the ID of that tenant, using the --project option.

On our OpenStack Compute host, this creates an interface named vlan100, which is the
tagged interface to eth2, as specified in --vlan_interface from /etc/nova/nova.conf.

Configuring per-project (tenant) IP ranges
Projects in Nova are a way of keeping user's cloud resources separate. In a project, there are
a number of images, instances, and its own network resources assigned to it. When we create
a project, we assign it its own VLAN with its own private and public ranges. For example, we
may wish to create a development tenancy that is separate from the performance testing
tenancy and live tenancies.

Getting ready
To begin with, ensure you're logged in to the OpenStack API server (our OpenStack VirtualBox
Virtual Machine, openstack1, created in Chapter 1, Starting OpenStack Compute).

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack Networking

204

How to do it...
In order to configure per-project (tenant) IP ranges, carry out the following steps:

1. First, on our keystone client, list the current projects, as follows:
Use the admin token

export ENDPOINT=172.16.0.1

export SERVICE_TOKEN=ADMIN

export SERVICE_ENDPOINT=http://${ENDPOINT}:35357/v2.0

keystone tenant-list

This returns a list of projects in our example.

2. Now, let's create another project named development; the project user will be
demo. We do this as follows:
keystone tenant-create --name=development

An example of running the previous command is shown as follows:

3. This will return a project ID. Now let's create a fixed IP range for this project. We will
create a fixed range of 10.0.4.0/24. To allocate this to our project, along with a
new VLAN ID associated with this network, enter the following command:
sudo nova-manage network create
 --label=development --fixed_range_v4=10.0.4.0/24
 --project_id=bfe40200d6ee413aa8062891a8270edb
 --vlan=101

How it works...
Creating IP address ranges for projects is done as part of creating new projects (tenants). We
first create the project, which returns an ID that we use when creating that network, using the
following syntax:

sudo nova-manage network create --label=project_name
 --fixed_range_v4=ip_range --bridge_interface=interface
 --project_id=id --vlan=vlan_id

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

205

Automatically assigning fixed networks
to tenants

When using VlanManager to separate tenants, we can manually assign VLANs and network
ranges to them by creating a secure multi-tenant environment. We can, however, have
OpenStack manage this association for us, so that when we create a project it automatically
gets assigned these details.

Getting ready
To begin with, ensure you are logged in to the OpenStack API server as well as a client that
can access the keystone environment.

How to do it...
1. Carry out the following steps to configure networking in OpenStack to automatically

assign new tenants' individual VLANs and private (fixed) IP in the file /etc/nova/
nova.conf, and ensure there is a flag called --vlan_start with a VLAN ID,
for example:
--vlan_start=100

2. We can now create a range of networks, each with 256 addresses available, by
issuing the following command:
sudo nova-manage network create
 --num_networks=10 --network_size=256
 --fixed_range_v4=10.0.0.0/8 --label=auto

3. This creates 10 networks, with 256 IP addresses starting from 10.0.0.0/24 to
10.0.9.0/24 and starting from VLAN ID 100 to VLAN ID 110.

You can specify an alternative VLAN start ID on the
command line by adding in the --vlan=id option,
where id is a number.

How it works...
By specifying the --num_networks option and specifying the --network_size option (the
number of IPs in each of the created networks), we can tell our OpenStack environment to
create multiple networks within the range specified by --fixed_range_v4. When projects
are created now, rather than having to manually associate an address range with a tenant,
they are automatically assigned a VLAN, starting from the --vlan_start ID, as specified in
/etc/nova/nova.conf.

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack Networking

206

Modifying a tenant's fixed network
To ensure that our OpenStack environment is able to separate traffic from one tenant to
another, we assign different fixed ranges to each. When a fixed network is no longer required,
or we want to assign a particular tenant to a specific network, we can use the nova-manage
command to modify these details.

Getting ready
To begin with, ensure you're logged in to the OpenStack API server as well as to a client that
can access the keystone environment.

How to do it...
To assign a particular network to a tenant, carry out the following steps:

1. On a client that has access to the keystone command, run the following commands
to list the projects available:
Use the admin token

export ENDPOINT=172.16.0.1

export SERVICE_TOKEN=ADMIN

export SERVICE_ENDPOINT=http://${ENDPOINT}:35357/v2.0

keystone tenant-list

An example of running the previous commands is as follows:

2. To view the list of networks and ranges available, issue the following command on an
OpenStack API host:
sudo nova-manage network list

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

207

An example of running the previous commands is as follows:

3. The output shown lists network ranges and their associated project IDs. From this, we
can see we have 10.0.3.0/24 not assigned to a project (where it says None under the
project column). To assign this network range to the development tenant, we issue
the following commands:
sudo nova-manage network modify
 --project=bfe40200d6ee413aa8062891a8270edb
 --fixed_range=10.0.3.0/24

4. When we view the output now for that network range, we will have this project ID
assigned to it and any instances spawned under this tenant will be assigned an
address in this range.

How it works...
When configuring tenants in our OpenStack environment, it is recommended (although not a
requirement) to have their own private (fixed) range assigned to them. This allows for those
instances in a particular tenant to be kept separated through their different ranges along with
appropriately set security group rules.

The syntax to modify a network is as follows:

nova-manage network modify --project=project_id
 --fixed_range=ip_range

Manually associating floating IPs
to instances

When an instance boots, it is assigned a private IP address. This IP range is only accessible
within our virtual environment's network. To access this instance to serve the rest of the
network or the public, we need to assign it a floating IP, which is the range we configure when
we set up public IP ranges.

There are two ways to allocate floating IPs to instances: either automatically, as the instance is
spawned, or manually through our client tools. In both cases, our tenancy must have a range
of floating IPs assigned to it so they can be allocated.

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack Networking

208

Getting ready
While on the OpenStack API host, for example, openstack1, run the following command to
list any floating ranges we have assigned:

sudo nova-manage floating list

This should list the IP range we originally set up when we first installed our
openstack1 server.

None 172.16.1.1 None nova eth1
None 172.16.1.2 None nova eth1
…

To allocate a floating IP to an instance, ensure you're logged in to a client that is running
euca2ools or Nova Client.

How to do it...
To assign a floating (public) IP address to an instance using euca2ools, carry out the
following steps:

1. To allocate one of the floating IP addresses available to our project, we run the
following command:
euca-allocate-address

2. An address will appear from the pool of IPs we have available, for example,
172.16.1.1.

3. To associate this address to an instance, we issue the following commands:
euca-associate-address -i i-00000002 172.16.1.1

4. We are now able to communicate with that instance using this assigned floating IP
address.

To assign a floating (public) IP address to an instance using Nova Client, carry out the
following steps:

1. To allocate one of the floating IP addresses available to our project, we run the
following command:
nova floating-ip-create

2. An address will appear from the pool of IPs we have available, for example
172.16.1.1.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

209

3. To associate this address to an instance, we issue the following command:

nova add-floating-ip 6c79552c-7006-4b74-a037-ebe9707cc9ce
 172.16.1.1

We are now able to communicate with that instance using this assigned floating IP address.

How it works...
Instances are not instantly accessible outside of the OpenStack host unless a public IP
address is attached to it. Manually associating an address consists of the following two steps:

1. Allocating an address from the available IP range.

2. Associating the address with an instance.

This is an important concept, as it allows you to control the allocation of IP addresses as well
as allocating specific addresses to specific instances, which is very much like Amazon's Elastic
IP feature.

Manually disassociating floating IPs
from instances

In our cloud environment, we have the ability to add and remove access to and from the
instance publicly by adding or removing a floating IP address to or from it. This flexibility allows
us to move services seamlessly between instances. To the outside world it would appear to be
the same instance, as their access to it via that IP has not changed to them.

Getting ready
To begin with, ensure you are logged in to a client machine running euca2ools or Nova Client.

How to do it...
To disassociate a public (floating) address from an instance using euca2ools, carry out the
following steps:

1. We first list the instances in our environment, to identify the instance we wish to
remove the public IP address from, as follows:
euca-describe-instances

2. Once we have identified the instance we wish to disassociate the IP from, we execute
the following command:
euca-disassociate-address 172.16.1.1

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack Networking

210

3. This instantly removes the association between this address and the instance.

If we no longer require that floating IP address for our project, we can
remove it from our project's pool by issuing the following command:
euca-release-address 172.16.1.1.

To disassociate a public (floating) address from an instance using Nova Client, carry out
the following:

1. We first list the instance in our environment, to identify the instance we wish to
remove the public IP address from, as follows:
nova list

2. Once we have identified the instance we wish to disassociate the IP from, we execute
the following command:
nova remove-floating-ip 2abf8d8d-6f45-42a5-9f9f-
 63b6a956b74f 172.16.1.1

3. This instantly removes the association with this address from the instance.

If we no longer require that floating IP address for our project,
we can remove it from our project's pool by issuing the
following command:
nova floating-ip-delete 172.16.1.1

How it works...
Removing a floating IP address is very straightforward. When using euca2ools, we use
the euca-disassociate-address command or, when using Nova Client, we use the
remove-floating-ip option to the nova command.

Automatically assigning floating IPs
When an instance boots, it is assigned a private IP address. This private IP address is only
accessible within our virtual environment's network. To access this instance to serve the rest
of the network or the public, we need to assign it a floating IP, which is the range we configure
when we set up public IP ranges.

Automatically assigning floating IPs to instances gives us the ability, in our environment, to
have access to all instances on our network. Although there are times when we might want
to manually assign addresses (for example, where we have a limited number of IPs assigned
to a tenancy), the convenience of having this done for you is very beneficial and makes our
OpenStack environment operate much closer to how Amazon EC2 operates.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

211

Getting ready
To begin with, ensure you are logged in to the OpenStack API server. We will also be using the
client machine, so log in to your client that is running euca2ools or Nova Client.

How to do it...
To ensure each of the instances gets a public (floating) IP address assigned to it when it is
launched, carry out the following steps:

1. While on our OpenStack API host, run the following command to list any floating
ranges we have assigned:
sudo nova-manage floating list

An example of the output when listing the floating IPs is shown as follows, truncated
for brevity:

None 172.16.1.1 None nova eth1
None 172.16.1.2 None nova eth1
…

2. The values indicate we have a floating range available for use. Rather than using
client tools to assign addresses to instances, a flag in our /etc/nova/nova.conf
file ensures our instances are always allocated an address:
--auto_assign_floating_ip

3. With this added to our nova.conf configuration file, we restart our nova-network
and nova-compute services, to pick up the change:
sudo restart nova-network

sudo restart nova-network

4. When an instance spawns, it will automatically be assigned a public floating IP
address that we can instantly use to gain access.

How it works...
Instances aren't instantly accessible outside of the OpenStack host unless a public IP
address is assigned to them. Configuring our OpenStack environment so that each instance
is assigned an address on launch makes the instances instantly accessible.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

11
In the Datacenter

In this chapter, we will cover:

 f Installing MAAS for bare-metal provisioning

 f Using MAAS for bare-metal provisioning of hosts

 f Installing and configuring Juju

 f Installing OpenStack services using Juju

 f Increasing OpenStack Compute capacity

 f MySQL clustering using Galera

 f Configuring HA Proxy for MySQL Galera load balancing

 f Increasing resilience of OpenStack services

 f Bonding network interfaces for redundancy

Introduction
OpenStack is a suite of software designed to offer scale-out cloud environments deployed
in datacenters around the world. Managing installation of software in a remote location is
different (and sometimes challenging), compared to being able to install software locally,
and so tools and techniques have been developed to ease this task. Design considerations
of how to deal with hardware and software failure must also be taken into consideration
in operational environments. Identifying single points of failure (SPOF) and adding ways
of making them resilient ensures our OpenStack environment remains available when
something goes wrong.

This chapter introduces some methods and software to help manage OpenStack in
production datacenters.

www.it-ebooks.info

http://www.it-ebooks.info/

In the Datacenter

214

Installing MAAS for bare-metal provisioning
There are a number of ways, such as Cobbler and Kickstart, to provision an operating system
such as Ubuntu to bare-metal. Ubuntu provides a convenient tool for bare-metal provisioning
of servers in our datacenter that they call MAAS, which stands for Metal-as-a-Service. This
tool allows us to simply set up a network boot environment that then allows us to allocate
services to it, for example, OpenStack services, such as Compute or Dashboard.

Getting ready
We need to identify a server on the network that will be running the MAAS services, such as
PXE Boot and TFTP Daemon services. Log in to this server to install the MAAS services. This
server will need Internet access to pull in the required Ubuntu packages.

How to do it...
To install MAAS for the installation of Ubuntu on servers on our network, carry out the
following steps:

1. Install the actual MAAS package, which itself will pull in dependent components. We
do this as follows:
sudo apt-get update

sudo apt-get -y install maas

2. Once installed, create a super-user account, as follows:
sudo maas createsuperuser

An example of running the previous command is as follows:

Username (Leave blank to use 'root'): admin
E-mail address: root@mycloudnetwork.com
Password:
Password (again):
Superuser created successfully.

3. When that's done, we need to configure DHCP as follows:
sudo apt-get -y install maas-dhcp

4. During the installation, we will be asked to fill in details for our network. Assuming
our network is 172.16.0.0/16 and that we will run and set up our hosts in the range
172.16.0.11 to 172.16.0.200, we define the range with:
Set the network range for DHCP Clients:
172.16.0.11,172.16.0.200

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

215

5. Next, we configure the gateway of the hosts when they receive an IP address. In this
example, we're assuming this is 172.16.0.250.
Set Default Gateway for DHCP Clients:
172.16.0.250

6. Enter the domain of your network (or optionally leave it blank):
internal.mycloudnetwork.com

7. Once complete, this will configure and run dnsmasq to provide these services to our
hosts from our MAAS server.

8. With MAAS with DHCP configured, we now need to import the ISOs, for use within our
environment, that our hosts can use to boot and install. We do this with the following
command:
sudo maas-import-isos

9. After a short while, the ISOs will be downloaded, ready for use.

How it works...
MAAS provides PXE boot services that reduce the complexity with network boot bare-metal
environments. Installation is very easy with these packages, with the appropriate configuration
done at installation time.

The main command-line tool used is called maas, and we use this to create an administrator
user that is used to create further accounts if required.

With everything configured, we then perform a pull of the ISOs from ubuntu.com. This job is
run weekly, but we must first kick this off manually, once installed.

Using MAAS for bare-metal provisioning
of hosts

MAAS allows us to provision hosts on our network from bare-metal, meaning from power-on,
the hosts are installed appropriately for our use.

Getting ready
The MAAS server has a web interface that we use to set up our hosts. Identify the server that
has MAAS installed.

www.it-ebooks.info

http://www.it-ebooks.info/

In the Datacenter

216

How to do it...
Once MAAS is installed, we can use it to provision servers on our network by carrying out the
following steps:

1. Open up a web browser and point it your MAAS server. For example, if you
installed MAAS on 172.16.0.250, point it at the following address
http://172.16.0.250/MAAS.

2. This will present you with a username and password screen. Enter the details you
used when you ran the maas createsuperuser command.

3. Once logged in, you will be presented with a basic screen saying 0 nodes in the
deployment. Clicking on the text by MAAS allows you to change the name.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

217

4. With this setup, we network boot (PXE boot) a node that will communicate with the
MAAS server, providing us with a list of boot options. From the list of options, choose
the maas-enlist option, which will bootstrap the node, register the node with our
MAAS server, and then power itself off.

5. The MAAS web interface will now change to showing 1 nodes in this MAAS. Click on
the Nodes menu option.

6. You will see a list of nodes associated with MAAS as the MAC addresses seen on the
node. Click on the listed node to be presented with a screen that details some more
information about it and the actions associated with it. The state of the machine
should say Declared.

7. Click on the Accept & commission button. This will change the status to
Commissioning.

8. The MAAS server can automatically power on servers using Wake-On-LAN/Avahi. If
not, power the node back on again and PXE boot a second time. This will configure
the node so that it can be commissioned by MAAS and then power itself off again.

www.it-ebooks.info

http://www.it-ebooks.info/

In the Datacenter

218

9. On viewing our MAAS screen now, we see that the node status screen has changed to
green and MAAS is telling us there is 1 node queued.

10. Using the Node menu, browse to the node that is available to us, and then click on
Start node.

11. If the node does not power on again, manually start it and PXE boot the node a third
time. This will then start an installation of Ubuntu 12.04 on this node.

How it works...
Using MAAS is done in a few stages. The first is to notify MAAS of the node that will be
installed using MAAS, by enlisting it with the service. This sends some information over to
MAAS, which will identify it (specifically the MAC addresses of the interfaces on the node).
Once MAAS is aware of the node, we can start the node—which MAAS can boot automatically
using Wake-On-Lan (WOL)—which will then bootstrap the node that is ready for an OS
installation. Once bootstrapped, we can perform a final PXE boot that will then install the
operating system for us, ready for further work—particularly Juju.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

219

Installing and configuring Juju
Ubuntu provides a tool named Juju that allows us to not only install packages, but to also
install and configure the services by way of charms. Charms are a collection of scripts and
descriptions on how to install and configure that service. For example, a charm for, say
Wordpress, will install the Wordpress PHP files, as well as allow us to attach the Wordpress
installation to a MySQL backend, or attach to a load balancer through relationships with those
other services.

Getting ready
Log in to a shell on the MAAS server.

How to do it...
Carry out the following steps to install and configure Juju on our MAAS host:

1. First, we need to install the Juju tools. We do this as follows:
sudo apt-get update

sudo apt-get -y install juju

2. Once installed, we need to get the MAAS API key for our admin user set up under
MAAS. To do this, we navigate to the Preferences link in the MAAS web interface
and copy the key (or alternatively generate a new one and take a copy of that).

3. We are now ready to configure our Juju environment. To do this, we create a file
named ~/.juju/environments.yaml, as follows:
environments:
 maas:
 type: maas
 maas-server: 'http://172.16.0.250:80/MAAS'
 maas-oauth:
 'tcWxFpwbWqyeBFDd4P:HTCSqrsw7XQKBcvm8n:
 bp67u5TkSLu2wf2b7wUS2ckLjwELCZED'
 admin-secret: 'nothing'
 default-series: precise

www.it-ebooks.info

http://www.it-ebooks.info/

In the Datacenter

220

4. Finally, Juju requires SSH keys to be configured to allow it to access the deployed
nodes. To create the keys, issue the following command:
ssh-keygen -t rsa -N ""

How it works...
Juju is a very powerful tool to allow you to manage your environments very easily using simple
commands. Since Ubuntu 12.04, Juju is part of the distribution and works in tandem with
MAAS to allow us to provision bare-metal services using Juju commands.

By configuring Juju to work with MAAS in this way, we can launch new machines with
configured services by instructing MAAS to power on servers and to install that service once
the relevant operating system has been installed. This, in our case, will be Ubuntu 12.04,
precisely as dictated by the default-series configuration option.

Ensure that we have the correct MAAS API key, where it is states maas-oauth.

Finally, putting in our public SSH key into MAAS allows us to use our Juju environment using
SSH keys.

Installing OpenStack services using Juju
With Juju installed and configured to work with MAAS, we're ready to configure Juju to install
our OpenStack environment.

At this point, it is assumed you have at least nine servers available, with two separate network
cards in each to deploy OpenStack to, in order to provision an OpenStack environment using
Juju and MAAS. This is because Juju installs each service to a new server.

Getting ready
Log in to a shell on the MAAS server.

How to do it...
To install OpenStack using Juju, carry out the following steps:

1. Create the file .juju/openstack.cfg, with the following contents:
keystone:
 admin-password: "openstack"
nova-cloud-controller:
 network-manager: "FlatDHCPManager"
nova-volume:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

221

 # This must be a free block device that is writable on the
 # nova-volume host.
 block-device: "xvdb"
 overwrite: "true"

2. Once that is done, we bootstrap the environment, which sets up an initial
administration server that is able to orchestrate the deployment of services:
juju bootstrap

It might take a while for a node to fully bootstrap as it installs and
pulls down required packages. Check with juju status -v, for an
update on whether the bootstrap node has finished installing.

3. In our MAAS web GUI, the status screen will change the node we have bootstrapped
to blue, to show this is successful, and the status of the node will change to
Allocated to Admin.

4. Once this is in place, we can deploy the OpenStack environment. First, we'll deploy
the MySQL and RabbitMQ services, referencing the local charms we
have downloaded:
juju deploy mysql

juju deploy rabbitmq-server

www.it-ebooks.info

http://www.it-ebooks.info/

In the Datacenter

222

5. After this, we install Keystone, Nova Cloud Controller (nova-api), and the Nova
Volume services, specifying the configuration file to pass as an argument to the
installation that we created earlier:
juju deploy --config=.juju/openstack.cfg keystone

juju deploy --config=.juju/openstack.cfg nova-cloud-
 controller

juju deploy --config=.juju/openstack.cfg nova-volume

6. And finally, we finish this off with the following service installations:
juju deploy nova-compute

juju deploy glance

juju deploy openstack-dashboard

7. With all the packages deployed, we now need to establish the relationships between
the services. We continue to use the juju commands to do this. We first connect
Keystone to MySQL, as follows:
juju add-relation keystone mysql

8. Next, we can connect nova-cloud-controller to the supporting services of
MySQL, RabbitMQ, Glance, and Keystone.
juju add-relation nova-cloud-controller mysql

juju add-relation nova-cloud-controller rabbitmq

juju add-relation nova-cloud-controller glance

juju add-relation nova-cloud-controller keystone

9. We continue connecting nova-volume to MySQL and RabbitMQ, as follows:
juju add-relation nova-volume mysql

juju add-relation nova-volume rabbitmq

10. Then, we can connect nova-compute to the required services:
juju add-relation nova-compute mysql

juju add-relation nova-compute rabbitmq

juju add-relation nova-compute glance

juju add-relation nova-compute keystone

juju add-relation nova-compute:network-manager nova-cloud-
 controller:network-manager

11. Then, we can connect Glance to its required supporting services of MySQL and
Keystone:
juju add-relation glance mysql

juju add-relation glance keystone

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

223

12. Finally, we connect Horizon OpenStack Dashboard to Keystone:
juju add-relation openstack-dashboard keystone

13. Congratulations! Our environment has been deployed. To discover the node that has
the OpenStack Dashboard installed, we execute the following command that will
return the address we need to use to put in our web browser:
juju status openstack-dashboard

How it works...
Juju is a powerful tool for deploying environments and services. With Juju, we're able to
utilize the power of apt with the ability to link services together known as "relations" in
Juju terminology.

We first set up a configuration file that we can refer to when installing some components of
OpenStack. This adds an important level of flexibility to our Juju use.

With the configuration of OpenStack ready, we are now ready to begin using Juju. The
first step is to bootstrap the environment. This sets up a server that is used to provision
our environment. Following this, we install the services one by one. Currently, Juju only
supports installation of services onto their own nodes—so every Juju deployment step
utilizes a new node.

With the services deployed, we simply define the relationships between the services—which
is another term for connecting the services together. For example, we connect our keystone
server with the MySQL server. We also connect keystone to compute, glance, and so on,
as they all rely on OpenStack Identity Service. Similarly, the services that rely on mysql are all
connected together. This continues until all relationships have been set up.

Once completed, given that Juju decides where to install the services, we need to discover
which node has the OpenStack Dashboard installed. To do this, we simply ask for status
information about openstack-dashboard, which returns the URL for us to use.

Increasing OpenStack Compute capacity
Adding extra Compute capacity is very simple with OpenStack. You essentially add in as many
compute nodes as required, each having the same configuration file that tells OpenStack of
its existence.

www.it-ebooks.info

http://www.it-ebooks.info/

In the Datacenter

224

Adding Compute capacity using Juju is simply achieved by enlisting a new server into MAAS,
and then running the following commands:

juju deploy nova-compute

juju add-relation nova-compute mysql

juju add-relation nova-compute rabbitmq

juju add-relation nova-compute glance

juju add-relation nova-compute keystone

juju add-relation nova-compute:network-manager nova-cloud-
 controller:network-manager

If Juju is not configured, add Compute hosts manually using the package manager, apt, and
carry out the steps in the following section.

Getting ready
Ensure that Ubuntu is installed on the new node and networking has been configured
appropriately. Log in to a shell on this new node that will become the extra Compute
resource that we are adding to our OpenStack Compute cluster.

How to do it...
To increase OpenStack Compute capacity, carry out the following steps:

1. Configure the server as you would for the rest of your OpenStack environment.
This includes the same OS, disk layout (and any mount points), and
networking configuration.

2. Once this has been done, we install the packages on this new node, as follows:
sudo apt-get update

sudo apt-get -y install nova-compute nova-network nova-api

3. Ensure that the servers are time-synced and configured appropriately:
sudo apt-get -y install ntp

configure

sudo service ntpd start

4. From an existing OpenStack node, copy over the /etc/nova directory to our new
Compute node:
On an existing host, copy /etc/nova to new host
 (openstackX)

cd /etc

sudo scp -r nova/ openstackX:/tmp

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

225

On new host (openstackX) host

sudo mv /tmp/nova /etc

sudo chown -R nova:nova /etc/nova

5. Finally, start up the new Compute services, as follows:
sudo start nova-compute

sudo start nova-api

sudo start nova-network

6. To check that our new host is ready to accept new services, log in to the OpenStack
Controller node, where nova-manage is available, and issue the following command:
sudo nova-manage service list

7. The new host and its services, with :-) as the status, shows that the new node
is ready.

How it works...
Scaling out OpenStack Compute using Juju is a very simple process. Manually adding in hosts
is equally as straightforward, as each OpenStack host is configured with the same nova.
conf configuration files. We simply install the services, configure the service (by copying over
existing configuration files, as they reference the same RabbitMQ, MySQL, Keystone services,
and so on), and ensure that the servers are time-synced. When we start up the services
(for example, adding a row into the relevant table), they contact the supporting services,
which in turn makes the other services aware of their existence. The scheduler will then take
advantage of this new node to launch instances.

MySQL clustering using Galera
OpenStack can be backed by a number of database backends, and one of the most
common options is MySQL. There are a number of ways to make MySQL more resilient and
available. The following approach uses a load balancer to front a multi-read/write master with
Galera, taking care of the synchronous replication required in such a setup. The advantage of
this is that we are adding resilience in the event of a database node failure, as each node is
getting ready.

We'll be using a free online configuration tool from SeveralNines.com to configure a
3-node, multi-master MySQL setup with Galera, monitored using the free cluster management
interface, cmon, using a fourth node. This implies we have four servers available, running
Ubuntu (other platforms are supported) with enough memory and disk space for our
environment and at least two CPUs available.

www.it-ebooks.info

http://www.it-ebooks.info/

In the Datacenter

226

How to do it...
To cluster MySQL using Galera, carry out the following steps:

MySQL and Galera configuration
1. We first use a web browser from our desktop and head over to http://www.

severalnines.com/galera-configurator/, where we will input some
information about our environment to produce the script required to install our
Galera-based MySQL cluster.

This is a third-party service asking for details pertinent to our
environment. Do not include passwords for the environment that this
will be deployed to. The process downloads scripts and configuration
files that should be edited to suit before execution with real settings.

2. The first screen asks for general settings, as follows:
Cloud Provider: none/on-premise
Operating System: Ubuntu/Debian
Platform: Linux 64-bit (x86_64)
Number of Galera Servers: 3+1
MySQL Server password (root user): openstack
Port Number: 3306
Config directory: /etc/
OS User: galera
CMON DB password (cmon user): cmon

3. Next, we'll configure server properties (configure as appropriate):
System Memory (MySQL Servers): (at least 512Mb)
WAN: no
Skip DNS Resolve: yes
Database Size < 8Gb
MySQL Usage: Medium write/high read
Number of cores: 2
Innodb_buffer_pool_size: (at least 358) Mb
Innodb_file_per_table: checked

4. Next, we'll configure the nodes and addresses, as follows:
ClusterControl Server: 172.16.0.20
System Memory: (at least 512Mb)
Datadir: <same as for mysql>
Installdir: /usr/local

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

227

Web server(apache) settings
Apache User: www-data
WWWROOT: /var/www/

Galera Servers

The following table lists the IP address, data directory, and installation directory
for the servers:

Server-id IP-address Datadir Installdir
1 172.16.0.21 /var/lib/mysql/ /usr/local/

2 172.16.0.22 same as mentioned earlier same as mentioned earlier
3 172.16.0.23 same as mentioned earlier same as mentioned earlier

5. The final step asks for an e-mail address to send the configuration and deployment
script to. Once a valid e-mail address has been entered, press the Generate
Deployment Scripts button.

Node preparation
1. Each node is configured such that the user used to run the setup routine (the OS

user as configured in step 2 in the previous section) can SSH to each node—including
itself—and run commands through sudo without being asked for a password. To do
this, we first create the user's SSH key as follows:
ssh-keygen -t rsa -N ""

2. We now need to copy this to each of our nodes, including the node we're on now (so
that it can SSH to itself):
copy ssh key to 172.16.0.20, 172.16.0.21, 172.16.0.22

and 172.16.0.23

for a in {20..23}

do

 ssh-copy-id -i .ssh/id_rsa.pub galera@172.16.0.${a}

done

3. This will ask for the password of the galera user on each of the nodes, but following
this, we shouldn't be prompted. To test, simply do the following, which should get
executed without intervention:
for a in {20..23}

do

 ssh galera@172.16.0.${a} ls

done

www.it-ebooks.info

http://www.it-ebooks.info/

In the Datacenter

228

4. We now need to ensure the galera user can execute commands using sudo without
being asked for a password. To do this, we execute the following on all nodes:
echo "galera ALL=(ALL:ALL) NOPASSWD:ALL" | sudo tee -a
 /etc/sudoers.d/galera

Then fix the permissions to prevent future warnings

sudo chmod 0440 /etc/sudoers.d/galera

Installation
1. From the e-mail that has been sent, download the attached gzipped tarball, and

copy it over to the first of our nodes that we specified in the configuration as the
ClusterControl Server (for example, 172.16.0.20).

2. Log in to the ClusterControl Server as the OS user specified in step 2 of the MySQL
and Galera Configuration section (for example, galera):
ssh galera@172.16.0.20

3. Unpack the tarball copied over and change to the install directory in the unpacked
archive, as follows:
tar zxf s9s-galera-2.0.0.tar.gz

cd s9s-galera-2.0.0/mysql/scripts/install

4. Once in this directory, we simply execute the deploy.sh script:
bash ./deploy.sh 2>&1 |tee cc.log

5. A question will be asked regarding the ability to shell to each node. Answer Y to this.
Installation will then continue, which will configure MySQL with Galera as well as
cmon, to monitor the environment.

6. After a period of time, once installation has completed, we point our web browser to
the ClusterControl server to finalize the setup at the address specified, for example,
http://172.16.0.20/cmon/setup.php, and change the cmon server listening
address to be 172.16.0.20.

Configuration of database cluster for OpenStack
1. Once the cluster has been set up, we can now create the databases, users, and

privileges required for our OpenStack environment, as we would do for any other
OpenStack installation. To do this, we can use the web administration interface
provided by the SeveralNines' ClusterControl interface.

2. The first step is to point your web browser to the ClusterControl server dashboard, for
example, http://172.16.0.20/cmon/.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

229

3. Select the cluster (default_repl_1) that will then list the nodes in our cluster. A menu
will appear on the right side of the screen. Select the Schema mgmt link, as shown in
the following screenshot:

4. Under Schema Management, we can create and drop databases, create and delete
users, and grant and revoke privileges. For OpenStack, we need to create three users
and three databases, with appropriate privileges. First, we create the nova database.
To do this, click on the Privileges button.

5. The screen will change to one that allows us to create databases, users, and
assign privileges. Create a database named nova, by clicking on the Create
Database button.

6. Repeat the process to create the keystone and glance databases.

7. Once done, we can now create a user named nova, who is allowed to access our
database cluster from any host (using the MySQL wildcard character %) with a
password of openstack:

8. Repeat the process for a keystone and a glance user.

www.it-ebooks.info

http://www.it-ebooks.info/

In the Datacenter

230

9. We end up with a number of users with passwords entered into our MySQL cluster
that we can use when configuring OpenStack services that require access to MySQL.

Click on the Privileges button again to refresh the screen to
see the user just created.

10. We now assign privileges to these users. To do this for the nova user, we select the
following entries:

 � ALL PRIVILEGES

 � ON nova.*

 � TO 'nova'@'%'

as shown in the following screenshot:

11. Repeat the process for the keystone and glance users and their
respective databases.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

231

12. We now have all our databases, users, and privileges set up, ready for our
OpenStack environment.

How it works...
Galera replication is a synchronous multi-master plugin for InnoDB. It has the advantage
that any client can write to any node in the cluster and not suffer from write conflicts or a
data replication lag. There are some caveats to a Galera-backed MySQL cluster that must
be considered though. Any database write is only as fast as the slowest node, to maintain
synchronicity. As the number of nodes in a Galera cluster increases, the time to write to the
database can increase. And finally, given that each node maintains a copy of the database on
its local storage, it isn't as space-efficient as using a cluster based on shared storage.

Setting up a highly available MySQL cluster with Galera for data replication is easily achieved
using the freely available online configuration tool from SeveralNines. By following the
process, we end up with four nodes, of which three are assigned to running MySQL with
Galera and the fourth allows us to manage the cluster.

With the automatic routine installation complete, we can create our databases and users and
can assign privileges using the ClusterControl interface, without needing to think about any
replication issues. In fact, we can create these by attaching to any one of the three MySQL
servers we would normally treat independently, and the data will automatically sync to the
other nodes.

For OpenStack, we create three databases (nova, glance, and keystone) and assign
appropriate users and privileges to these databases. We can then use this information to put
into the appropriate configuration files for OpenStack.

www.it-ebooks.info

http://www.it-ebooks.info/

In the Datacenter

232

Configuring HA Proxy for MySQL Galera
load balancing

With our MySQL Galera cluster configured, each of the nodes is able to take traffic, and the
writes are seamlessly replicated to other nodes in the cluster. We could use any of the MySQL
node addresses and place them in our configuration files, but if that node failed, we would not
have a database to attach to and our OpenStack environment would fail. A solution to this is
to front the MySQL cluster using load balancing. Given that any of the nodes are able to take
reads and writes, with data consistency, load balancing is a great solution.

The steps in the following section configure a highly available 2-node HA Proxy setup that we
can use as a MySQL endpoint to place in our OpenStack configuration files. In production, if
load balancing is desired, it is recommended that dedicated HA load balancers be used.

Getting ready
Configure two servers, both running Ubuntu 12.04, that are configured on the same network
as our OpenStack environment and MySQL Galera cluster. In the following steps, the two
nodes will be on IP addresses 172.16.0.20 and 172.16.0.21, with a floating IP address (that
has been set up using keepalived) of 172.16.0.30. This address is used when we configure
database connections in our OpenStack configuration files.

How to do it...
To configure HA Proxy for MySQL Galera load balancing, carry out the following steps:

Installation of HA Proxy for MySQL
1. As we are setting up identical servers to act in a pair, we will configure a single server

first, and then repeat the process for the second server. We first install HA Proxy using
the usual apt-get process, as follows:
sudo apt-get update

sudo apt-get -y install haproxy

2. With HA Proxy installed, we'll simply configure this first proxy server appropriately for
our MySQL Galera cluster. To do this, we edit the /etc/haproxy/haproxy.cfg file
with the following contents:
global
 log 127.0.0.1 local0
 log 127.0.0.1 local1 notice
 #log loghost local0 info
 maxconn 4096
 #chroot /usr/share/haproxy

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

233

 user haproxy
 group haproxy
 daemon
 #debug
 #quiet

defaults
 log global
 mode http
 option tcplog
 option dontlognull
 retries 3
 option redispatch
 maxconn 4096
 timeout connect 50000ms
 timeout client 50000ms
 timeout server 50000ms

listen mysql 0.0.0.0:3306
 mode tcp
 balance roundrobin
 option tcpka
 option mysql-check user haproxy
 server galera1 172.16.0.21:3306 weight 1
 server galera2 172.16.0.22:3306 weight 1
 server galera3 172.16.0.23:3306 weight 1

3. Save and exit the file and start up HA Proxy, as follows:
sudo sed -i 's/^ENABLED.*/ENABLED=1/' /etc/defaults/haproxy

sudo service haproxy start

4. Before we can use this HA Proxy server to access our three MySQL nodes, we must
create the user specified in the haproxy.cfg file that is used to do a very simple
check to see if MySQL is up. To do this, we add a user into our cluster that is simply
able to connect to MySQL. Using the ClusterControl interface, or using the mysql
client and attaching to any of the MySQL instances in our cluster, create the user
haproxy with no password set that is allowed access from the IP address of the HA
Proxy server.

5. At this point, we can use a MySQL client and point this to the HA Proxy address.

www.it-ebooks.info

http://www.it-ebooks.info/

In the Datacenter

234

6. Having a single HA Proxy server sitting in front of our multi-master MySQL cluster
makes the HA Proxy server our single point of failure. To overcome this, we repeat
the previous steps for our second HA Proxy server, and then we use a simple
solution provided by keepalived for VRRP (Virtual Redundant Router Protocol)
management. To do this, we need to install keepalived on our HA Proxy servers.
Like before, we will configure one server then repeat the steps for our second server.
We do this as follows:
sudo apt-get update

sudo apt-get -y install keepalived

7. To allow running software to bind to an address that does not physically exist on our
server, we add in an option to sysctl.conf, to allow this. Add the following line to
/etc/sysctl.conf:
net.ipv4.ip_nonlocal_bind=1

8. To pick up the change, issue the following command:
sudo sysctl -p

9. We can now configure keepalived. To do this, we create a /etc/keepalived/
keepalived.conf file with the following contents:
vrrp_script chk_haproxy {
 script "killall -0 haproxy" # verify the pid exists or not
 interval 2 # check every 2 seconds
 weight 2 # add 2 points if OK
}

vrrp_instance VI_1 {
 interface eth1 # interface to monitor
 state MASTER
 virtual_router_id 51 # Assign one ID for this route
 priority 101 # 101 on master, 100 on backup
 virtual_ipaddress {
 172.16.0.30 # the virtual IP
 }
 track_script {
 chk_haproxy
 }
}

10. We can now start up keepalived on this server, by issuing the following command:
sudo service keepalived start

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

235

11. With keepalived now running on our first HA Proxy server, which we have designated
as the MASTER node, we repeat the previous steps for our second HA Proxy server
with only two changes to the keepalived.conf file (state BACKUP and priority
100) to give the complete file on our second host the following contents:
vrrp_script chk_haproxy {
 script "killall -0 haproxy" # verify the pid exists or not
 interval 2 # check every 2 seconds
 weight 2 # add 2 points if OK
}

vrrp_instance VI_1 {
 interface eth1 # interface to monitor
 state BACKUP
 virtual_router_id 51 # Assign one ID for this route
 priority 100 # 101 on master, 100 on backup
 virtual_ipaddress {
 172.16.0.30 # the virtual IP
 }
 track_script {
 chk_haproxy
 }
}

12. Start up keepalived on this second node, and they will be acting in co-ordination
with each other. So if you powered off the first HA Proxy server, the second will pick
up the floating IP address, 172.16.0.30, after two seconds, and new connections can
be made to our MySQL cluster without disruption.

OpenStack Configuration using a floating IP address
With both HA Proxy servers running the same HA Proxy configuration, and with both running
keepalived, we can use the virtual_ipaddress address (our floating IP address)
configured as the address that we would then connect to and use in our configuration files. In
OpenStack, we would change the following to use our floating IP address of 172.16.0.30:

/etc/nova/nova.conf
--sql_connection=mysql://nova:openstack@172.16.0.30/nova

/etc/keystone/keystone.conf
[sql]
connection = mysql://keystone:openstack@172.16.0.30/keystone

/etc/glance/glance-registry.conf
sql_connection = mysql://glance:openstack@172.16.0.30/glance

www.it-ebooks.info

http://www.it-ebooks.info/

In the Datacenter

236

How it works...
HA Proxy is a very popular and useful proxy and load balancer that makes it ideal for fronting
a MySQL cluster to add load-balancing capabilities. It is simple to set up the service to
front MySQL.

The first requirement is to listen on the appropriate port, which for MySQL is 3306. The
listen line in the configuration files here also specifies it will listen on all addresses by using
0.0.0.0 as the address, but you can bind this to a particular address by specifying this to
add an extra layer of control in our environment.

To use MySQL, the mode must be set to tcp and we set keepalived with the tcpka option,
to ensure long-lived connections are not interrupted and closed when a client opens up a
connection to our MySQL servers.

The load balance method used is roundrobin, which is perfectly suitable for a multi-master
cluster where any node can perform reads and writes.

We add in a basic check to ensure our MySQL servers are marked off-line appropriately.
Using the inbuilt mysql-check option (which requires a user to be set up in MySQL to log
in to the MySQL nodes and quit), when a MySQL server fails, the server is ignored and traffic
passes to a MySQL server that is alive. Note that it does not perform any checks for whether a
particular table exists—though this can be achieved with more complex configurations using a
check script running on each MySQL server and calling this as part of our checks.

The final configuration step for HA Proxy is listing the nodes and the addresses that they listen
on, which forms the load balance pool of servers.

Having a single HA Proxy acting as a load balancer to a highly available multi-master cluster is
not recommended, as the load balancer then becomes our single point of failure. To overcome
this, we can simply install and configure keepalived, which gives us the ability to share a
floating IP address between our HA Proxy servers. This allows us to use this floating IP address
as the address to use for our OpenStack services.

Increasing resilience of OpenStack services
OpenStack has been designed for highly scalable environments where it is possible to avoid
single point of failures (SPOFs), but you must build this into your own environment. For
example, Keystone is a central service underpinning your entire OpenStack environment,
so you would build multiple instances into your environment. Glance is another service that
is a key to the running of your OpenStack environment. By setting up multiple instances
running these services, controlled with Pacemaker and Corosync, we can enjoy an increase in
resilience to failure of the nodes running these services.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

237

This recipe represents two nodes running both Glance and Keystone, controlled by Pacemaker
with Corosync in active/passive mode, that allows for a failure of a single node. In a
production environment, it is recommended that a cluster consist of at least three nodes to
ensure resiliency and consistency in the case of a single node failure.

Getting ready
We must first create two servers configured appropriately for use with OpenStack. As these
two servers will just be running Keystone and Glance, only a single network interface and
address on the network that our OpenStack services communicate on will be required. This
interface can be bonded for added resilience.

How to do it...
To increase the resilience of OpenStack services, carry out the following steps:

First node (openstack1)
1. Once Ubuntu has been installed with an address in our OpenStack environment that

our other OpenStack services can use to communicate, we can proceed to install
Pacemaker and Corosync, as follows:
sudo apt-get update

sudo apt-get -y install pacemaker corosync

2. It's important that our two nodes know each other by address and hostname, so
enter their details in /etc/hosts to avoid DNS lookups, as follows:
172.16.0.1 openstack1.cloud.test openstack1
172.16.0.2 openstack2.cloud.test openstack2

3. Edit the /etc/corosync/corosync.conf file so the interface section matches
the following:
interface {
 # The following values need to be set based on your
environment
 ringnumber: 0
 bindnetaddr: 172.16.0.0
 mcastaddr: 226.94.1.1
 mcastport: 5405
}

Corosync uses multi-cast. Ensure the values don't conflict
with any other multi-cast-enabled services on your network.

www.it-ebooks.info

http://www.it-ebooks.info/

In the Datacenter

238

4. The corosync service isn't set to start by default. To ensure it starts, edit the
/etc/default/corosync service and set START=yes, as follows:
sudo sed -i 's/^START=no/START=yes/g' /etc/default/corosync

5. We now need to generate an authorization key to secure the communication between
our two hosts:
sudo corosync-keygen

6. You will be asked to generate some random entropy by typing at the keyboard. If
you are using an SSH session, rather than a console connection, you won't be able
to generate the entropy using a keyboard. To do this remotely, launch a new SSH
session, and in that new session, while the corosync-keygen command is waiting
for entropy, run the following:
while /bin/true; do dd if=/dev/urandom of=/tmp/100 bs=1024
 count=100000; for i in {1..10}; do cp /tmp/100
 /tmp/tmp_$i_$RANDOM; done; rm -f /tmp/tmp_*
 /tmp/100; done

7. When the corosync-keygen command has finished running and an authkey file
has been generated, simply press Ctrl+C to copy this random entropy creation loop.

Second node (openstack2)
1. We now need to install Pacemaker and Corosync on our second host, openstack2.

We do this as follows:
sudo apt-get update

sudo apt-get install pacemaker corosync

2. We also ensure that our /etc/hosts file has the same entries for our other host, as
before:
172.16.0.1 openstack1.cloud.test openstack1
172.16.0.2 openstack2.cloud.test openstack2

3. The corosync service isn't set to start by default. To ensure that it starts, edit the /
etc/default/corosync service and set START=yes:
sudo sed -i 's/^START=no/START=yes/g' /etc/default/corosync

4. We also ensure that our /etc/hosts file has the same entries for our other host,
as before:
172.16.0.1 openstack1.cloud.test openstack1
172.16.0.2 openstack2.cloud.test openstack2

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

239

First node (openstack1)
With the /etc/corosync/corosync.conf file modified and the /etc/corosync/
authkey file generated, we copy this to the other node (or nodes) in our cluster, as follows:

scp /etc/corosync/corosync.conf /etc/corosync/authkey
 openstack@172.16.0.2:

Second node (openstack2)
We can now put the same corosync.conf file as used by our first node, and the generated
authkey file, into /etc/corosync:

sudo mv corosync.conf authkey /etc/corosync

Start the Pacemaker and Corosync services
1. We are now ready to start the services. On both nodes, issue the

following commands:
sudo service pacemaker start

sudo service corosync start

2. To check that our services have started fine and our cluster is working, we can use
the crm_mon command to query the cluster status, as follows:
sudo crm_mon -1

3. This will return output similar to the following:
============
Last updated: Tue Jun 12 21:07:05 2012
Last change: Tue Jun 12 21:06:10 2012 via crmd on
 openstack1
Stack: openais
Current DC: openstack1 - partition with quorum
Version: 1.1.6-9971ebba4494012a93c03b40a2c58ec0eb60f50c
2 Nodes configured, 2 expected votes
0 Resources configured.
============

Online: [openstack1 openstack2]

www.it-ebooks.info

http://www.it-ebooks.info/

In the Datacenter

240

First node (openstack1)
1. We can validate the configuration using the crm_verify command, as follows:

sudo crm_verify -L

2. This will bring back an error mentioning STONITH (Shoot The Other Node In The
Head). STONITH is used to maintain quorum when there are at least three nodes
configured. It isn't required in a 2-node cluster. As we are only configuring a 2-node
cluster, we disable STONITH.
sudo crm configure property stonith-enabled=false

3. Verifying the cluster using crm_verify again will now show errors:
sudo crm_verify -L

4. Again, as this is only a 2-node cluster, we also disable any notion of quorum,
using the following command:
sudo crm configure property no-quorum-policy=ignore

5. On the first node, we can now configure our services and set up a floating address
that will be shared between the two servers. In the following command, we've chosen
172.16.0.10 as the floating IP address. To do this, we use the crm command again to
configure this floating IP address, which we will call FloatingIP.
sudo crm configure primitive FloatingIP
 ocf:heartbeat:IPaddr2 params ip=172.16.0.10
 cidr_netmask=32 op monitor interval=30s

6. On viewing the status of our cluster, using crm_mon, we can now see that
the FloatingIP address has been assigned to our openstack1 host:
sudo crm_mon -1

7. This outputs something similar to the following example:
============
Last updated: Tue Jun 12 21:23:07 2012
Last change: Tue Jun 12 21:06:10 2012 via crmd on
 openstack1
Stack: openais
Current DC: openstack1 - partition with quorum
Version: 1.1.6-9971ebba4494012a93c03b40a2c58ec0eb60f50c
2 Nodes configured, 2 expected votes
1 Resources configured.
============

Online: [openstack1 openstack2]

 FloatingIP (ocf::heartbeat:IPaddr2): Started openstack1

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

241

8. We can now use this address to connect to our first node and, when we power
that node off, that address will be sent to our second node after 30 seconds of
no response from the first node.

Keystone across 2 nodes with FloatingIP
1. If Keystone is not installed on this first host, install it and configure it appropriately,

as if we are configuring a single host (See Chapter 3, Keystone OpenStack Identity
Service). Ensure the keystone database is backed by a database backend such
as MySQL.

2. With Keystone running on this host, we should be able to query Keystone using both
its own IP address (172.16.0.1) and the floating IP (172.16.0.10) from a client that
has access to the OpenStack environment.
Assigned IP

export OS_USERNAME=admin

export OS_PASSWORD=openstack

export OS_TENANT_NAME=cookbook

export OS_AUTH_URL=http://172.16.0.1:5000/v2.0/

keystone user-list

FloatingIP

export OS_AUTH_URL=http://172.16.0.10:5000/v2.0/

keystone user-list

3. On the second node, install and configure Keystone, configured such that
Keystone is pointing at the same database backend.
sudo apt-get update

sudo apt-get install keystone python-mysqldb

4. Copy over the /etc/keystone/keystone.conf file from the first host,
put it in place on the second node, and then restart the Keystone service. There is
no further work required, as the database population with endpoints and users has
already been done on the first node.
sudo stop keystone

sudo start keystone

5. We can now interrogate the second Keystone service on its own IP address.
Second Node

export OS_AUTH_URL=http://172.16.0.2:5000/v2.0/

keystone user-list

www.it-ebooks.info

http://www.it-ebooks.info/

In the Datacenter

242

Glance across 2 nodes with FloatingIP
1. In order to have Glance able to run across multiple nodes, it must be configured with

a shared storage backend (such as Swift) and be backed by a database backend
(such as MySQL). On the first host, install and configure Glance, as described in
Chapter 7, Glance OpenStack Image Service.

2. On the second node, simply install the required packages to run Glance, which is
backed by MySQL and Swift:
sudo apt-get install glance python-swift

3. Copy over the configuration files in /etc/glance to the second host, and
start the glance-api and glance-registry services on both nodes, as follows:
sudo start glance-api

sudo start glance-registry

4. We can now use either the Glance server to view our images, as well as the
FloatingIP address that is assigned to our first node.
First node

glance -I admin -K openstack -T cookbook -N
 http://172.16.0.1:5000/v2.0 index

Second node

glance -I admin -K openstack -T cookbook -N
 http://172.16.0.2:5000/v2.0 index

FloatingIP

glance -I admin -K openstack -T cookbook -N
 http://172.16.0.10:5000/v2.0 index

Configuring Pacemaker for use with Glance and Keystone
1. With Keystone and Glance running on both nodes, we can now configure Pacemaker

to take control of this service, so that we can ensure Keystone and Glance are
running on the appropriate node when the other node fails. To do this, we first
disable the upstart jobs for controlling Keystone and Glance services. To do this, we
create upstart override files for these services (on both nodes). Create /etc/init/
keystone.override, /etc/init/glance-api.override, and /etc/init/
glance-registry.override with just the keyword, manual, in.

2. We now grab the OCF agents that are able to control our Keystone and Glance
services. We must do this on both our nodes.
wget https://raw.github.com/madkiss/keystone
 /ha/tools/ocf/keystone

wget https://raw.github.com/madkiss/glance/
 ha/tools/ocf/glance-api

wget https://raw.github.com/madkiss/glance/
 ha/tools/ocf/glance-registry

sudo mkdir -p /usr/lib/ocf/resource.d/openstack

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

243

sudo cp keystone glance-api glance-registry
 /usr/lib/ocf/resource.d/openstack

sudo chmod 755 /usr/lib/ocf/resource.d/openstack/*

3. We should now be able to query these new OCF agents, which will return these three
OCF agents:
sudo crm ra list ocf openstack

4. We can now configure Pacemaker to use these agents to control our
Keystone service. To do this, we run the following set of commands:
sudo crm cib new conf-keystone

sudo crm configure property stonith-enabled=false

sudo crm configure property no-quorum-policy=ignore

sudo crm configure primitive p_keystone
 ocf:openstack:keystone \

 params config="/etc/keystone/keystone.conf" \

 os_auth_url="http://localhost:5000/v2.0/" \

 os_password="openstack" \

 os_tenant_name="cookbook" \

 os_username="admin" \

 user="keystone" \

 client_binary="/usr/bin/keystone" \

 op monitor interval="30s" timeout="30s"

sudo crm cib use live

sudo crm cib commit conf-keystone

5. We then issue a similar set of commands for the two Glance services,
as follows:
sudo crm cib new conf-glance-api

sudo crm configure property stonith-enabled=false

sudo crm configure property no-quorum-policy=ignore

sudo crm configure primitive p_glance_api ocf:openstack:glance-api
\

 params config="/etc/glance/glance-api.conf" \

 os_auth_url="http://localhost:5000/v2.0/" \

 os_password="openstack" \

 os_tenant_name="cookbook" \

 os_username="admin" \

 user="glance" \

 client_binary="/usr/bin/glance" \

 op monitor interval="30s" timeout="30s"

sudo crm cib use live

sudo crm cib commit conf-glance-api

www.it-ebooks.info

http://www.it-ebooks.info/

In the Datacenter

244

sudo crm cib new conf-glance-registry

sudo crm configure property stonith-enabled=false

sudo crm configure property no-quorum-policy=ignore

sudo crm configure primitive p_glance_registry
ocf:openstack:glance-registry \

 params config="/etc/glance/glance-registry.conf" \

 os_auth_url="http://localhost:5000/v2.0/" \

 os_password="openstack" \

 os_tenant_name="cookbook" \

 os_username="admin" \

 user="glance" \

 op monitor interval="30s" timeout="30s"

sudo crm cib use live

sudo crm cib commit conf-glance-registry

6. We can verify that we have our Pacemaker configured correctly, by issuing
the following command:
sudo crm_mon -1

7. This brings back something similar to the following:
Last updated: Tue Jun 12 22:55:25 2012
Last change: Tue Jun 12 21:06:10 2012 via crmd on
 openstack1
Stack: openais
Current DC: openstack1 - partition with quorum
Version: 1.1.6-9971ebba4494012a93c03b40a2c58ec0eb60f50c
2 Nodes configured, 2 expected votes
4 Resources configured.
============

Online: [openstack1 openstack2]

 FloatingIP (ocf::heartbeat:IPaddr2): Started openstack1
 p_keystone (ocf::openstack:keystone):
 Started openstack1
 p_glance_api (ocf::openstack:glance_api):
 Started openstack1
 p_glance_registry (ocf::openstack:glance_registry):
 Started openstack1

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

245

Here's what to do if you receive an error similar to the following:
Failed actions:
 p_keystone_monitor_0 (node=ubuntu2, call=3, rc=5,
 status=complete): not installed

Issue the following to clear the status and then view the status again:
sudo crm_resource -P
sudo crm_mon -1

8. We are now able to configure our client so that it uses the FloatingIP address of
172.16.0.10 for both Glance and Keystone services. With this in place, we can bring
down the interface on our first node and still have our Keystone and Glance services
available on this FloatingIP address.

We now have Keystone and Glance running on two separate nodes, where a node can fail and
the services will still be available.

How it works...
Making OpenStack services highly available is a complex subject, and there are a number of
ways to achieve this. Using Pacemaker and Corosync is a very good solution to this problem.
It allows us to configure a floating IP address assigned to the cluster that will attach itself to
the appropriate node (using Corosync), as well as control services using agents, so the cluster
manager can start and stop services as required, to provide a highly available experience to
the end user.

By installing both Keystone and Glance on two separate nodes (each configured appropriately
with a remote database backend such as MySQL and Glance), having the images available
using a shared filesystem or cloud storage solution means we can configure these services
with Pacemaker to allow Pacemaker to monitor them. If unavailable on the active node,
Pacemaker can start those services on the passive node.

Configuration of Pacemaker is predominantly done with the crm tool. This allows us to script
the configuration but, if invoked on its own, allows us to invoke an interactive shell that we can
use to edit, add, and remove services as well as query the status of the cluster. This is a very
powerful tool to control an equally powerful cluster manager.

With both nodes running Keystone and Glance, and with Pacemaker and Corosync running
and accessible on the floating IP provided by Corosync, we configure Pacemaker to control
the running of the Keystone and Glance services by using an OCF agent written specifically for
this purpose. The OCF agent uses a number of parameters that will be familiar to us—whereby
they require the same username, password, tenant, and endpoint URL that we would use in a
client to access that service.

A timeout of 30 seconds was set up for both the agent and when the floating IP address
moves to another host.

www.it-ebooks.info

http://www.it-ebooks.info/

In the Datacenter

246

Bonding network interfaces for redundancy
Running multiple services across multiple machines and implementing appropriate HA
methods ensures a high degree of tolerance to failure within our environment, but if it's the
physical network that fails and not the service, outages will occur if traffic cannot flow to and
from that service. Adding in NIC bonding (also known as teaming or link aggregation) can help
alleviate these issues by ensuring traffic flows through diverse routes and switches
as appropriate.

Getting ready
NIC bonding requires co-ordination between system administrators and the network
administrators, who are responsible for the switches. There are various methods available for
NIC bonding. The method presented here is the active-passive mode, which describes that
traffic will normally flow through a single switch, leaving the other teamed NIC to take no traffic
until it is required.

How to do it...
Setting up NIC bonding in Ubuntu 12.04 requires an extra package installation to allow
for bonding.

1. We install this in the usual manner, as follows:
sudo apt-get update

sudo apt-get -y install ifenslave

2. With this installed, we simply configure networking as normal in Ubuntu but
add in the required elements for bonding. To do this, we edit the /etc/network/
interfaces file with the following contents (for active-passive mode bonding)—here
we're bonding eth1 and eth2 to give us bond0:
auto eth1
iface eth1 inet manual
 bond-master bond0
 bond-primary eth1 eth2

auto eth2
iface eth2 inet manual
 bond-master bond0
 bond-primary eth1 eth2

auto bond0
iface bond0 inet static
 address 172.16.0.101

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

247

 netmask 255.255.0.0
 network 172.16.0.0
 broadcast 172.16.255.255
 bond-slaves none
 bond-mode 1
 bond-miimon 100

3. To ensure that the correct bonding mode is used, we add the following
contents into /etc/modprobe.d/bonding.conf:
alias bond0 bonding
options bonding mode=1 miimon=100

4. We can now restart our networking, which in turn will bring up our bonded interface
with the required IP address, as specified:
sudo service networking restart

How it works...
Bonding network interfaces in Ubuntu to cater to switch failure is relatively straightforward,
providing co-ordination with how the switches are set up and configured. With different paths
to different switches configured, and each network interface going to separate switches, a
high level of fault tolerance to network-level events such as a switch failure can be achieved.

To do this, we simply configure our bonding in the traditional /etc/network/interfaces
file under Ubuntu, but we specify which NICs are teamed with which bonded interface. Each
bonded interface configured has at least a unique pair of interfaces assigned to it, and then
we configure that bonded interface, bond0, with the usual IP address, netmask, and so on.
We tag a few options specifically to notify Ubuntu that this is a bonded interface of a
particular mode.

To ensure the bonding module that gets loaded as part of the kernel has the right mode
assigned to it, we configure the module in /etc/modprobe.d/bonding.conf. When the
bonding module loads along with the network interface, we end up with a server that is able
to withstand isolated switch failures.

See also
 f See https://help.ubuntu.com/community/LinkAggregation, for

more information

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

12
Monitoring

In this chapter, we will cover:

 f Monitoring Compute services with Munin

 f Monitoring instances using Munin and Collectd

 f Monitoring the storage service using StatsD/Graphite

 f Monitoring MySQL with Hyperic

Introduction
There are a number of ways to monitor computer systems and their services but the same
principles remain. Adequate monitoring and alerting of services is the only way to ensure
we know there's a problem before our customers. From SNMP traps to agents running on
machines specific to the services running, configuration of monitoring is an essential step in
production deployments of OpenStack. This chapter introduces some tools that can be used
to monitor services within our OpenStack environment.

Monitoring Compute services with Munin
Munin is a network and system monitoring application that outputs graphs through a web
interface. It comprises of a master server that gathers the output from the agents running on
each of our hosts.

Getting ready
We will be configuring Munin on a server that has access to the OpenStack Compute
environment hosts. Ensure this server has enough RAM, disk, and CPU capacity for the
environment you are running. As a bare minimum in a test environment, it is possible to run
this on a VM with 1vCPU, 1.5 GB of RAM, and 8 GB of disk space.

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring

250

How to do it...
To set up Munin with OpenStack, carry out the following steps:

1. Install Munin.

2. Configure the Munin nodes.

3. Configure OpenStack plugins for Munin.

Munin Master Server
The Munin Master node is the server that provides us with the web interface to view the
collected information about the nodes in our network and must be installed first, as follows:

1. Configure a server with the Ubuntu 12.04 64-bit version, with access to the servers in
our OpenStack environment.

2. Install Munin from the Ubuntu repositories:
sudo apt-get update

sudo apt-get -y install apache2

sudo apt-get -y install munin munin-plugins-extra

sudo service apache2 restart

3. By default, the Apache configuration for Munin only allows access from 127.0.0.1. To
allow access from our network, we edit /etc/apache2/conf.d/munin and allow
the server(s) or network(s) that can access Munin. For example, to allow access from
192.168.1.0/24, we add the following Access line in:
Allow from 192.168.1.

4. We reload the Apache service to pick up this change. We do this as follows:
sudo service apache2 reload

5. At this stage, we have a basic installation of Munin that is gathering statistics for the
running machine where we have just installed Munin. This can be seen if you load up
a web browser and browse to http://server/munin.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

251

6. Configuration of Munin Master is done in the /etc/munin/munin.conf file.
Here, we tell Munin where our OpenStack hosts, which are specified as FQDNs,
are. Munin groups these hosts under the same domain. For example, to add in two
OpenStack hosts that have the addresses 172.16.0.1 (openstack1) and 172.16.0.2
(openstack2), we add the following section into the munin.conf file:
[openstack1.cloud.test]
 address 172.16.0.1
 use_node_name yes

[openstack2.cloud.test]
 address 172.16.0.2
 use_node_name yes

We can now proceed to configure the nodes openstack1 and openstack2.

Munin nodes
With the Munin Master server installed, we can now configure the Munin nodes. These have
an agent on them, called munin-node, that the master uses to gather the information and
present to the user.

1. We first need to install the munin-node package on our OpenStack hosts. So, for
each one, we execute the following:
sudo apt-get update

sudo apt-get -y install munin-node munin-plugins-extra

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring

252

2. Once installed, we need to configure this so that our Munin Master host is allowed to
get information from the node. To do this, we edit the /etc/munin/munin-node.
conf file and add in an allow line. To allow our Master on IP address 172.16.0.253,
we add the following entry:
allow ^172\.16\.0\.253$

3. Once that line is in, we can restart the munin-node service to pick up the change.
sudo restart munin-node

Monitoring OpenStack Compute services
With Munin Master installed, and having a couple of nodes with graphs showing up on the
Master, we can add in plugins to pick up the OpenStack services and graph them. To do this,
we check out some plugins from GitHub.

1. We first ensure we have the git client available to us on our OpenStack nodes:
sudo apt-get update

sudo apt-get -y install git

2. We can now check out the OpenStack plugins for Munin as they're not yet available in
the munin-plugins-extra package:
git clone https://github.com/munin-monitoring/contrib.git

3. This checks out contributed code and plugins to a directory named contrib. We
copy the relevant plugins for the OpenStack services into the Munin plugins directory,
as follows:
cd contrib/plugins

sudo cp nova/* /usr/share/munin/plugins/

sudo cp keystone/* /usr/share/munin/plugins

sudo cp glance/* /usr/share/munin/plugins

4. Munin-node comes with a utility that allows us to enable appropriate plugins on our
hosts automatically. We run the following commands to do this:
sudo munin-node-configure --suggest

sudo -i # get root shell

munin-node-configure --shell 2>&1 | egrep -v "^\#" | sh

5. The Keystone and Glance plugins don't get picked up automatically, so we add these
to the plugins' directory, manually, with symlinks:
cd /etc/munin/plugins

sudo ln -s /usr/share/munin/plugins/keystone_stats

sudo ln -s /usr/share/munin/plugins/glance_size

sudo ln -s /usr/share/munin/plugins/glance_status

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

253

6. We also need to add in an extra configuration file to sit alongside the OpenStack
plugins, called /etc/munin/plugin-conf.d/openstack.
[nova_*]
user nova

[keystone_*]
user keystone

[glance_*]
user glance

7. With the appropriate plugins configured, we restart the munin-node service, as
follows, to pick up the change:
sudo restart munin-node

8. When the Master server refreshes, we see OpenStack services as options and graphs
we can click through to.

How it works...
Munin is an excellent, open source networked, resource-monitoring tool that can help analyze
resource trends and identify problems with our OpenStack environment. Configuration is
very straightforward, with out of the box configuration providing lots of very useful graphs
from RRD (Round Robin Database) files. By adding in a few extra configuration options and
plugins, we can extend Munin to monitor our OpenStack environment.

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring

254

Once Munin has been installed, we have to do a few things to configure it to produce graphed
statistics for our environment:

1. Configure the Master Munin server with the nodes we wish to get graphs from. This
is done in the /etc/munin/munin.conf file by using the tree-like structure
domain/host address sections.

2. We then configure each node with the munin-node service. The munin-node
service has its own configuration file where we set the IP address of our master
Munin server. This authorizes the master server, with this IP address, to retrieve
the collected data from this node. This is set in the allow line in the
/etc/munin/munin.conf file.

3. Finally, we configure appropriate plugins for the services that we want to monitor.
With the OpenStack plugins installed, we can monitor the Compute, Keystone,
and Glance services and obtain statistics on the number of instances running, the
number of floating IPs assigned, allocated, and used, and so on.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

255

Monitoring instances using Munin
and Collectd

The health of the underlying infrastructure operating our on-premise cloud solution is
important, but of equal importance is to understand the metrics given by the Compute
instances themselves. For this, we can get metrics sent from them by using a monitoring tool
called Collectd, and we can leverage Munin for an overall view of our running virtual instances.

How to do it...
To set Munin and Collectd up, carry out the following steps:

Munin
We can configure Munin to look at more than just the CPU, memory, and disk space of the
host, by invoking the libvirt plugin to query values within the running instances on our
Compute hosts.

1. The libvirt munin plugin is conveniently provided by the Ubuntu repositories, so
we grab these in the usual way:
sudo apt-get update

sudo apt-get -y install munin-libvirt-plugins

2. Once downloaded, we then configure the munin libvirt plugins on the Compute
host:
cd /etc/munin/plugins

sudo ln -s /usr/share/munin/plugins/libvirt-blkstat

sudo ln -s /usr/share/munin/plugins/libvirt-ifstat

sudo ln -s /usr/share/munin/plugins/libvirt-cputime

sudo ln -s /usr/share/munin/plugins/libvirt-mem

3. With the plugins in place, we now need to configure them. This is done by placing a
file in /etc/munin/plugin-conf.d/libvirt, with the following contents:
[libvirt*]

user root

env.address qemu:///system

env.tmpfile /var/lib/munin/plugin-state/libvirt

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring

256

4. Once this is done, we restart the munin-node service, and we will see an additional
category show up in Munin, named virtual machines, where we can then see how
much of the system resources are being consumed on the host.

Collectd
Collectd is set up in three parts. There is a collectd server that listens over UDP for data
sent from clients. There is the client collectd service that sends the data to the collectd
server. Finally, there is a web interface to Collectd, named collectd-web, that allows for
easy viewing of the graphs sent from collectd.

Collectd server
1. We first install collectd and the required Perl resources in the usual way from

Ubuntu's repositories:
sudo apt-get update

sudo apt-get -y install collectd libjson-perl

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

257

2. Once installed, we configure the service to listen on a port of our choosing. The
configuration of collectd is done in /etc/collectd/collectd.conf. In the
following configuration, we listen on UDP port 12345:
Hostname "servername"
Interval 10
ReadThreads 5

LoadPlugin network
<Plugin network>
 Listen "*" "12345"
</Plugin>

LoadPlugin cpu
LoadPlugin df
LoadPlugin disk
LoadPlugin load
LoadPlugin memory
LoadPlugin processes
LoadPlugin swap
LoadPlugin syslog
LoadPlugin users
LoadPlugin interface
<Plugin interface>
 Interface "eth0"
</Plugin>
LoadPlugin tcpconns

LoadPlugin rrdtool
<Plugin "rrdtool">
 CacheFlush 120
 WritesPerSecond 50
</Plugin>

Include "/etc/collectd/filters.conf"
Include "/etc/collectd/thresholds.conf"

3. We restart the service to pick up these changes:
sudo service collectd restart

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring

258

Collectd Client
1. The collectd client and server both use the same package, so we install the client

in the same way.
sudo apt-get update

sudo apt-get -y install collectd libjson-perl

2. The configuration file for the guest is the same as for the server, but we
specify different options. Edit /etc/collectd/collectd.conf with the
following contents:
FQDNLookup true
Interval 10
ReadThreads 5
LoadPlugin network
<Plugin network>
 Server "172.16.0.253" "12345"
</Plugin>
LoadPlugin cpu
LoadPlugin df
LoadPlugin disk
LoadPlugin load
LoadPlugin memory
LoadPlugin processes
LoadPlugin swap
LoadPlugin syslog
LoadPlugin users
LoadPlugin interface
<Plugin interface>
 Interface "eth0"
</Plugin>

3. Restart the collectd service to pick up this change:
sudo service collectd restart

Collectd-web
1. At this point, data is being sent over to the collectd server (at address

172.16.0.253). To view this data, we install another package that can interpret the
RRD files and present them in an easy-to-use web interface. We first download the
collectd-web tarball from the following URL:

http://collectdweb.appspot.com/download/

2. We then unpack the archive, as follows:
tar zxvf collectd-web_0.4.0.tar.gz

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

259

3. Then, we copy everything over to the web server DocumentRoot directory:
sudo cp -a ./collectd-web /var/www

4. Create or modify the /etc/collectd/collection.conf file with the
following contents:
datadir: "/var/lib/collectd/"
libdir: "/usr/lib/collectd/"

5. We then run the standalone server that will listen locally for requests from Apache:
cd /var/www/collectd-web

sudo nohup python runserver.py &

6. After this we edit the vhost file that controls the DocumentRoot of our Apache setup
(on Ubuntu, this is /etc/apache2/sites-enabled/000-default) to ensure that
.htaccess files are understood with the AllowOverride all configuration:
 <Directory /var/www/>
 Options Indexes FollowSymLinks MultiViews
 AllowOverride all
 Order allow,deny
 allow from all
 </Directory>

7. We can now simply reload Apache to pick up the changes, as follows:
sudo service apache2 reload

8. Now, we point our web browser to our installation, for example,
http://172.16.0.253/collectd-web, to view the collectd
stats from the listed servers.

How it works...
Munin has plugins for various monitoring activities, including libvirt. As libvirt is used
to manage the running instances on our Compute nodes, they hold an array of information
that we can send to Munin to allow us to get a better understanding of what is happening in
and on our OpenStack Compute hosts and instances.

Collectd is regarded as one of the standard ways of collecting resource information from
servers and instances. It can act as a server and a client and, as such, we use the same
installation binaries on both our monitoring host and guests. The difference is in the
configuration file, /etc/collectd/collectd.conf. For the server, we specify that we
listen on a specific port using the following lines in the server's configuration file:

<Plugin network>
 Listen "*" "12345"
</Plugin>

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring

260

For the client configuration, we specify where we want the data sent to, using the following
lines in the client's configuration file:

<Plugin network>
 Server "172.16.0.253" "12345"
</Plugin>

To bring the two together in a convenient interface to collectd, we install the
collectd-web interface that has a standalone service that is used in conjunction
with Apache to provide us with the interface.

Monitoring the storage service using
StatsD/Graphite

When monitoring the OpenStack Storage service, Swift, we are looking at gathering key
metrics from within the storage cluster in order to make decisions on its health. For this, we
can use a small piece of middleware named swift-informant, together with StatsD and
Graphite, to produce near real-time stats of our cluster.

Getting ready
We will be configuring StatsD and Graphite on a server that has access to the OpenStack
Storage proxy server. Ensure this server has enough RAM, disk, and CPU capacity for the
environment you are running.

How to do it...
To install StatsD and Graphite, carry out the following steps:

Prerequisites
For this, we will be configuring a new Ubuntu 12.04 server. Once Ubuntu has been installed,
we need to install some prerequisite packages.

sudo apt-get update
sudo apt-get -y install git python-pip gcc python2.7-dev apache2
 libapache2-mod-python python-cairo python-django
 libapache2-mod-wsgi python-django-tagging

Graphite
1. Installation of Graphite is achieved using the Python Package Index tool, pip:

sudo pip install carbon
sudo pip install whisper
sudo pip install graphite-web

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

261

2. Once installed, we can configure the installation. Example configuration files for
Graphite are found in /opt/graphite/conf. We rename these to their respective
conf files:
cd /opt/graphite/conf

sudo mv carbon.conf.example carbon.conf

sudo mv storage-schemas.conf.example storage-schemas.conf

3. We now create the vhost file for Apache that will load the Graphite frontend. Create
/etc/apache2/sites-available/graphite with the following contents:
<VirtualHost *:80>
 ServerName 172.16.0.253
 DocumentRoot "/opt/graphite/webapp"
 ErrorLog /opt/graphite/storage/log/webapp/error.log
 CustomLog /opt/graphite/storage/log/webapp/access.log
 common

 # I've found that an equal number of processes & threads
 # tends
 # to show the best performance for Graphite (ymmv).
 WSGIDaemonProcess graphite processes=5 threads=5
 display-name='%{GROUP}' inactivity-timeout=120
 WSGIProcessGroup graphite
 WSGIApplicationGroup %{GLOBAL}
 WSGIImportScript /opt/graphite/conf/graphite.wsgi
 process-group=graphite application-group=%{GLOBAL}

 WSGIScriptAlias / /opt/graphite/conf/graphite.wsgi

 Alias /content/ /opt/graphite/webapp/content/
 <Location "/content/">
 SetHandler None
 </Location>

 Alias /media/ "/usr/lib/python2.7/dist-packages/django/
 contrib/admin/media/"
 <Location "/media/">
 SetHandler None
 </Location>

 # The graphite.wsgi file has to be accessible by apache.
 # It won't be visible to clients
 # because of the DocumentRoot though.
 <Directory /opt/graphite/conf/>
 Order deny,allow
 Allow from all
 </Directory>
</VirtualHost>

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring

262

4. We enable this website using the a2ensite utility:
sudo a2ensite graphite

5. We now need to enable the WSGI file for Graphite:
sudo mv graphite.wsgi.example graphite.wsgi

6. Various areas need to change their ownership to that of the process running the
Apache web server:
sudo chown -R www-data:www-data /opt/graphite/storage/log/

sudo touch /opt/graphite/storage/index

sudo chown www-data:www-data /opt/graphite/storage/index

7. We can now restart Apache to pick up these changes:
sudo service apache2 restart

8. The Graphite service runs with a SQLite database backend, so we need to
initialize this.
cd /opt/graphite/webapp/graphite

sudo python manage.py syncdb

9. This will ask for some information, as displayed next:
You just installed Django's auth system, which means you don't
have any superusers defined.
Would you like to create one now? (yes/no): yes
Username (Leave blank to use 'root'):
E-mail address: user@somedomain.com
Password:
Password (again):
Superuser created successfully.
Installing custom SQL …
Installing indexes …
No fixtures found.

10. We also need to ensure that Apache can write to this, too:
sudo chown -R www-data:www-data /opt/graphite/storage

11. Finally, we start the services, thus:
cd /opt/graphite

sudo bin/carbon-cache.py start

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

263

StatsD
1. StatsD runs using node.js, so we have to install it first, using packages from

Ubuntu's repositories:
sudo apt-get update

sudo apt-get -y install nodejs

2. We then check out the StatsD code from Git:
git clone https://github.com/etsy/statsd.git

3. Configuring StatsD is done by modifying an example configuration file:
cd statsd

cp exampleConfig.js Config.js

4. We need to modify the Config.js file to change the graphiteHost: parameter to
localhost, as we're running Graphite on the same host as StatsD:
{
 graphitePort: 2003
, graphiteHost: "localhost"
, port: 8125
}

5. To start the service, we issue the following command:
nohup node stats.js Config.js &

swift-informant
We are now ready to configure the OpenStack Swift proxy server to include the swift-
informant middleware in the pipeline. This is done by configuring the /etc/swift/
proxy-server.conf file.

1. We first download and install the middleware by running the following commands:
git clone https://github.com/pandemicsyn/swift-
 informant.git

cd swift-informant

sudo python setup.py install

2. Once installed, we modify the pipeline in /etc/swift/proxy-server.conf to
specify a filter named informant:
[pipeline:main]
pipeline = informant healthcheck cache swift3 s3token
 tokenauth keystone proxy-server

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring

264

3. We then add in the informant filter section, specifying the address of our StatsD
server, in the statsd_host section, as follows:
[filter:informant]
use = egg:informant#informant
statsd_host = 172.16.0.9
statsd_port = 8125
standard statsd sample rate 0.0 <= 1
statsd_sample_rate = 0.5
list of allowed methods, all others will generate a
 "BAD_METHOD" event
valid_http_methods = GET,HEAD,POST,PUT,DELETE,COPY
send multiple statsd events per packet as supported by
 statsdpy
combined_events = no
prepends name to metric collection output for easier
 recognition, e.g. company.swift.
metric_name_prepend =

4. Once done, we simply restart our OpenStack proxy service:
sudo swift-init proxy-server restart

5. Load up your web browser and point it to your Graphite web installation, to see the
graphs get populated in real time.

How it works...
Gaining insight into what our OpenStack Storage cluster is doing can be achieved by
including a piece of middleware in the pipeline of our OpenStack Storage proxy server,
named swift-informant, along with StatsD and Graphite. StatsD is a node.js service
that listens for statistics sent to it in UDP packets. Graphite takes this data and gives us a
real-time graph view of our running services.

Installation and configuration is done in stages. We first install and configure a server that
will be used for StatsD and Graphite. Graphite can be installed using Python's Package Index
(using the pip tool), and for this, we install three pieces of software: carbon (the collector),
whisper (fixed-size RRD service), and the Django Web Interface, graphite-web. Using the
pip tool installs these services to the /opt directory of our server.

Once the server for running Graphite and StatsD has been set up, we can configure the
OpenStack Storage proxy service, so that statistics are then sent to the Graphite and StatsD
server. With the appropriate configuration in place, the OpenStack Storage service will happily
send events, via UDP, to the StatsD service.

Configuration of the Graphite interface is done in an Apache vhost file that we place in
Ubuntu's Apache sites-available directory. We then enable this for our installation.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

265

Note that vhost needs to be configured appropriately for our environment—specifically the
path to the DJANGO_ROOT area—as part of our Python installation. For Ubuntu 12.04, this is /
usr/lib/python2.7/dist-packages/django to give us the following in our vhost file:

 Alias /media/ "/usr/lib/python2.7/dist-
 packages/django/contrib/admin/media/"

We then ensure that the Graphite WSGI (Web Service Gateway Interface) file is in place at
the appropriate path, as specified by the WSGIScriptAlias directive at /opt/graphite/
conf/graphite.wsgi.

Once in place, we ensure that our filesystem has the appropriate permissions to allow
Graphite to write various logs and information as it's running.

When this has been done, we simply restart Apache to pick up the changes.

With the Graphite web interface configured, we initialize the database; for this installation we
will make use of a SQLite database resource. This is achieved by running the syncdb option
with the Graphite manage.py script in the /opt/graphite/webapp/graphite directory.
This asks us to create a superuser called user for the system, to manage it later.

Once this has been done, we can start the collector service, carbon, which starts the
appropriate services that will listen for data being sent to it.

With all that in place, we simply move our efforts to the OpenStack Storage proxy service,
where we checkout the swift-informant middleware to be inserted into the pipeline of
our proxy service.

Monitoring MySQL with Hyperic
Database monitoring can be quite complex, and, depending on your deployment or
experience, monitoring may already be set up. For those that don't have existing monitoring
of a MySQL service, Hyperic from SpringSource is an excellent tool to set up monitoring and
alerting for MySQL. The software comes in two editions—an Open Source edition—suitable
for smaller installations—and an Enterprise edition with paid for support. The steps in the
following section are for the Open Source edition.

Hyperic can monitor many aspects of our OpenStack
environment including system load, network statistics,
Memcached, and RabbitMQ status.

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring

266

Getting ready
We will be configuring Hyperic on an Ubuntu 12.04 server that has access to the MySQL
server in our OpenStack environment. Ensure this server has enough RAM, disk, and CPU
capacity for the environment you are running. Log in as a normal user to download and
install the software.

How to do it...
To install Hyperic, carry out the following steps:

Hyperic server
1. We can find the Hyperic server installation package at the following URL:

http://www.springsource.com/landing/hyperic-open-
source-download

2. Fill in the details, and you will be presented with two links. One is for the server, and
the other for the agent. Download both.

3. On the server that will be running the Hyperic server, we unpack the Hyperic server
installation package as follows:
tar zxvf hyperic-hq-installer-4.5-x86-64-linux.tar.gz

4. Once unpacked, change to the directory:
cd hyperic-hq-installer-4.5

5. The default install area for Hyperic is /home/hyperic, so we create this and ensure
our unprivileged user can write to it:
sudo mkdir -p /home/hyperic

sudo chown openstack /home/hyperic

6. Once this area is ready, we can run the setup script to install Hyperic:
./setup.sh

7. During the installation, a message will pop up asking us to open up another
terminal on our server as the root user to execute a small script, as shown
in the following screenshot:

8. In another terminal, log in as root and execute the previous step.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

267

9. Return to the original shell and continue the installation. Eventually, the installation
will complete. We can now start the Hyperic HQ service with the following command:
/home/hyperic/server-4.5/bin/hq-server.sh start

10. First-time start up can be quite slow, but eventually you will be able to point your
web browser at the address the installation has presented to you, which will be
http://server:7080/.

11. Log in with user hqadmin and password hqadmin.

Nodes
Each node that we want to monitor in Hyperic needs an agent installed, which then gets
configured to talk back to the Hyperic server.

1. Copy the agent tarball to the server that we'll be monitoring in Hyperic.

2. Unpack the agent as follows:
tar zxvf hyperic-hq-agent-4.5-x86-64.tar.gz

3. Change to the unpacked directory:
cd hyperic-hq-agent-4.5

4. Start the agent, which will ask for information about the Hyperic server installation.
Specify the server address, port, username (hqadmin), and password (hqadmin).
When asked for the IP to use, specify the address that Hyperic can use to
communicate with the server.
bin/hq-agent.sh start

The output from running the previous command is as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring

268

5. This completes the installation of the agent.

6. Once done, the new node will appear in Hyperic, with auto-discovered services listed.

7. Click on the Add to Inventory button to accept these to be added to Hyperic, and you
will see our new node listed with the services that have been discovered.

Monitoring MySQL
To monitor MySQL, carry out the following steps:

1. Monitoring MySQL involves the agent understanding how to authenticate with MySQL.
We first add in the MySQL service to our host by selecting the host that has recently
been added. This takes us to the main screen for that host, where we can click
through services that are being monitored.

2. We then click on the Tools Menu option and select New Server.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

269

3. This takes us to a screen where we can add in a label for the new service and the
service type.
Name: openstack1 MySQL
Server Type: MySQL 5.x
Install Path: /usr

4. Clicking on OK takes us to the configuration screen for this new service. At the bottom
of the page, there is a section named Configuration Properties. Click on the EDIT…
button for this section.

www.it-ebooks.info

http://www.it-ebooks.info/

Monitoring

270

5. We can now specify the username, password, and connect string, to connect to the
running MySQL instance.
JDBC User: root
JDBC Password: openstack

These are the credentials for a user in MySQL that can see all databases. Check the
Auto-Discover Tables option and leave the rest of the options at their default values,
unless you need to change the address that the agent will connect
to for MySQL.

6. By clicking on OK and then browsing back to the host, we will now have a monitoring
option named openstack1 MySQL, as specified in step 3. The agent will then
collect statistics about our MySQL instance.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12

271

How it works...
Hyperic uses agents to collect information and sends this back to the Hyperic server, where
we can view statistics about the environment and configure alerting based on thresholds. The
agent is very flexible and can be configured to monitor many more services than just MySQL.

Configuration of the agent is done through the Hyperic server's interface, where a running
node's service is known as a "server". Here, we can configure usernames, ports, and
passwords, to allow the agent to successfully communicate with that service. For MySQL, this
is providing the agent with the correct username, password, and address for the familiar jdbc
(Java Database Connector) connect string.

There's more...
In your datacenter, you may have a MySQL cluster rather than a single server, where a view of
the cluster as a whole is of equal (if not more) importance to that of the individual nodes. An
example cluster monitoring suite that has both free and enterprise options is named CMON
and is available at SeveralNines (http://www.severalnines.com/resources/
cmon-cluster-monitor-mysql-cluster).

www.it-ebooks.info

http://www.severalnines.com/resources/cmon-cluster-monitor-mysql-cluster
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

13
Troubleshooting

In this chapter, we will cover:

 f Checking OpenStack Compute Services

 f Understanding logging

 f Troubleshooting OpenStack Compute Services

 f Troubleshooting OpenStack Storage Service

 f Troubleshooting OpenStack Authentication

 f Submitting bug reports

 f Getting help from the community

Introduction
OpenStack is a complex suite of software that can make tracking down issues and faults quite
daunting to beginners and experienced system administrators alike. While there is no single
approach to troubleshooting systems, understanding where OpenStack logs vital information
or what tools are available to help track down bugs will help resolve issues we may encounter.
It should also be expected that we won't be able to solve all issues without further help.
Gathering the required information so that the OpenStack community can identify bugs
and suggest fixes is important in ensuring those bugs or issues are dealt with quickly
and efficiently.

Checking OpenStack Compute Services
OpenStack provides tools to check various parts of Compute Services, and we'll use common
system commands to check whether our environment is running as expected.

www.it-ebooks.info

http://www.it-ebooks.info/

Troubleshooting

274

Getting ready
To check our OpenStack Compute host we must log in to that server, so do this now before
following the given steps.

How to do it...
To check that Nova is running the required services, we invoke the nova-manage tool and
ask it various questions of the environment as follows:

 f To check the OpenStack Compute hosts are running OK:
sudo nova-manage service list

You will see the following output. The :-) icons are indicative that everything is fine.

 f If Nova has a problem:

If you see XXX where the :-) icon should be, then you have a problem.

Troubleshooting is covered at the end of the book, but if you do see XXX then the
answer will be in the logs at /var/log/nova/.

If you get intermittent XXX and :-) icons for a service, first
check if the clocks are in sync.

 f Checking Glance:

Glance doesn't have a tool to check, so we can use some system commands instead.
ps -ef | grep glance

netstat -ant | grep 9292.*LISTEN

These should return process information for Glance to show it is running and 9292
is the default port that should be open in the LISTEN mode on your server ready
for use.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

275

 f Other services that you should check:

 � rabbitmq:
sudo rabbitmqctl status

The following is an example output from rabbitmqctl when everything is running OK:

 � ntp (Network Time Protocol, for keeping nodes in sync):
ntpq -p

It should return output regarding contacting NTP servers, for example:

 � MySQL Database Server:

MYSQL_PASS=openstack
 mysqladmin -uroot –p$MYSQL_PASS status

This will return some statistics about MySQL, if it is running:

www.it-ebooks.info

http://www.it-ebooks.info/

Troubleshooting

276

How it works...
We have used some basic commands that communicate with OpenStack Compute and other
services to show they are running. This elementary level of troubleshooting ensures you have
the system running as expected.

Understanding logging
Logging is important in all computer systems, but the more complex the system, the more
you rely on being able to spot problems to cut down on troubleshooting time. Understanding
logging in OpenStack is important to ensure your environment is healthy and is able to submit
relevant log entries back to the community to help fix bugs.

Getting ready
Log in as the root user onto the appropriate servers where the OpenStack services
are installed.

How to do it...
OpenStack produces a large number of logs that help troubleshoot our OpenStack
installations. The following details outline where these services write their logs.

OpenStack Compute Services Logs

Logs for the OpenStack Compute services are written to /var/log/nova/, which is owned
by the nova user, by default. To read these, log in as the root user. The following is a list of
services and their corresponding logs:

 f nova-compute: /var/log/nova/nova-compute.log

Log entries regarding the spinning up and running of the instances

 f nova-network: /var/log/nova/nova-network.log

Log entries regarding network state, assignment, routing, and security groups

 f nova-manage: /var/log/nova/nova-manage.log

Log entries produced when running the nova-manage command

 f nova-scheduler: /var/log/nova/nova-scheduler.log

Log entries pertaining to the scheduler, its assignment of tasks to nodes, and
messages from the queue

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

277

 f nova-objectstore: /var/log/nova/nova-objectstore.log

Log entries regarding the images

 f nova-api: /var/log/nova/nova-api.log

Log entries regarding user interaction with OpenStack as well as messages regarding
interaction with other components of OpenStack

 f nova-cert: /var/log/nova/nova-cert.log

Entries regarding the nova-cert process

 f nova-console: /var/log/nova/nova-console.log

Details about the nova-console VNC service

 f nova-consoleauth: /var/log/nova/nova-consoleauth.log

Authentication details related to the nova-console service

 f nova-dhcpbridge: /var/log/nova/nova-dhcpbridge.log

Network information regarding the dhcpbridge service

OpenStack Dashboard logs

OpenStack Dashboard (Horizon) is a web application that runs through Apache by default, so
any errors and access details will be in the Apache logs. These can be found in /var/log/
apache2/*.log, which will help you understand who is accessing the service as well as the
report on any errors seen with the service.

OpenStack Storage logs

OpenStack Storage (Swift) writes logs to syslog by default. On an Ubuntu system,
these can be viewed in /var/log/syslog. On other systems, these might be available
at /var/log/messages.

Logging can be adjusted to allow for these messages to be filtered in syslog using the
log_level, log_facility, and log_message options. Each service allows you to
set the following:

If you change any of these options, you will need to restart that service to pick up the change.

www.it-ebooks.info

http://www.it-ebooks.info/

Troubleshooting

278

Log-level settings in OpenStack Compute services

Many OpenStack services allow you to control the chatter in the logs by setting different log
output settings. Some services, though, tend to produce a lot of DEBUG noise by default.

This is controlled within the configuration files for that service. For example, the Glance
Registry service has the following settings in its configuration files:

Moreover, many services are adopting this facility. In production, you would set debug to
False and optionally keep a fairly high level of INFO requests being produced, which may
help with the general health reports of your OpenStack environment.

How it works...
Logging is an important activity in any software, and OpenStack is no different. It allows an
administrator to track down problematic activity that can be used in conjunction with the
community to help provide a solution. Understanding where the services log, and managing
those logs to allow someone to identify problems quickly and easily, are important.

Troubleshooting OpenStack
Compute Services

OpenStack Compute services are complex, and being able to diagnose faults is an essential
part of ensuring the smooth running of the services. Fortunately, OpenStack Compute
provides some tools to help with this process, along with tools provided by Ubuntu to help
identify issues.

How to do it...
Troubleshooting OpenStack Compute services can be a complex issue, but working through
problems methodically and logically will help you reach a satisfactory outcome. Carry out the
following steps when encountering the different problems presented.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

279

Cannot ping or SSH to an instance

1. When launching instances, we specify a security group. If none is specified, a security
group named default is used. These mandatory security groups ensure security is
enabled by default in our cloud environment, and as such, we must explicitly state
that we require the ability to ping our instances and SSH to them. For such a basic
activity, it is common to add these abilities to the default security group.

2. Network issues may prevent us from accessing our cloud instances. First, check that
the compute instances are able to forward packets from the public interface to the
bridged interface.
sysctl -A | grep ip_forward

3. net.ipv4.ip_forward should be set to 1. If it isn't, check that /etc/sysctl.
conf has the following option uncommented:
net.ipv4.ip_forward=1

4. Then, run the following, to pick up the change:
sudo sysctl -p

5. Other network issues could be routing problems. Check that we can communicate
with the OpenStack Compute nodes from our client and that any routing to get to
these instances has the correct entries.

6. We may have a conflict with IPv6, if IPv6 isn't required. If this is the case, try adding
--use_ipv6=false to your /etc/nova/nova.conf file, and restart the nova-
compute and nova-network services. We may also need to disable IPv6 in the
operating system, which can be achieved using something like the following line in /
etc/modprobe.d/ipv6.conf:
install ipv6 /bin/true

7. Reboot your host.

Viewing the Instance Console log

You can view the console information for an instance using a number of methods:

 f When using the command line, issue the following commands:
euca2ools

euca-get-console i-00000001

nova client

nova console-log 4b8776eb-77b5-48eb-9ec4-f4b6c6e3bdaa

www.it-ebooks.info

http://www.it-ebooks.info/

Troubleshooting

280

 f When using Horizon, carry out the following steps:

1. Navigate to the list of instances and select an instance.

2. You will be taken to an Overview screen. Along the top of the Overview
screen is a Log tab. This is the console log for the instance.

 f When viewing the logs directly on a nova-compute host, look for the following file:

The console logs are owned by root, so only an administrator can do this. They are
placed at /var/lib/nova/instances/<instance_id>/console.log.

Instance fails to download meta information

If an instance fails to communicate to download the extra information that can be supplied
to the instance meta-data, we can end up in a situation where the instance is up but you're
unable to log in, as the SSH key information is injected using this method.

Viewing the console log will show output like in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

281

Ensure the following:

1. nova-api is running on the host (in a multi_host environment, ensure there's a
nova-api and a nova-network node running on the nova-compute host).

2. Perform the following iptables check on the nova-network node that is running
nova-compute:
sudo iptables -L -n -t nat

We should see a line in the output like in the following screenshot:

3. If not, restart your nova-network services and check again.

4. Sometimes there are multiple copies of dnsmasq running, which can cause this
issue. Ensure that there is only one instance of dnsmasq running:
ps -ef | grep dnsmasq

This will bring back two process entries, the parent dnsmasq process and a spawned
child (verify by the PIDs). If there are any other instances of dnsmasq running, kill
the dnsmasq processes. When killed, restart nova-network, which will spawn
dnsmasq again without any conflicting processes.

Instance launches, stuck at "Booting" or "Pending"

Sometimes, a little patience is needed before assuming the instance has not booted, because
the image is copied across the network to a node that has not seen the image before. At
other times though, if the instance has been stuck in booting or a similar state for longer than
normal, it indicates a problem. The first place to look will be for errors in the logs. A quick way
of doing this is from the controller server and by issuing the following command:

sudo nova-manage logs error

A common error that is usually present is related to AMQP being unreachable. These can be
ignored unless the errors are currently appearing.

This command brings back any log line with the ERROR as log level, but you will need to
view the logs in more detail to get a clearer picture.

A key log file, when troubleshooting instances are not booting properly, will be available
at /var/log/nova/nova-compute.log. Look here at the time you launch the instance
and the ID.

www.it-ebooks.info

http://www.it-ebooks.info/

Troubleshooting

282

Check /var/log/nova/nova-network.log for any reason why instances aren't being
assigned IP addresses. It could be issues around DHCP preventing address allocation.

Error codes such as 401, 403, 500

The majority of the OpenStack services are web services, meaning the responses from the
services are well defined.

40X refers to a service that is up but responding to an event that is produced by some user
error. For example, a 401 is an authentication failure, so check the credentials used when
accessing the service.

50X errors mean a connecting service is unavailable or has caused an error that has caused
the service to interpret a response to cause a failure. Common problems here are services
that have not started properly, so check for running services.

If all avenues have been exhausted when troubleshooting your environment, reach out to the
community, using the mailing list or IRC, where there is a raft of people willing to offer their
time and assistance.

Listing all instances across all hosts

From the OpenStack controller node, you can execute the following command to get a list of
the running instances in the environment:

sudo nova-manage vm list

This is useful in identifying any failed instances and the host on which it is running. You can
then investigate further.

How it works...
Troubleshooting OpenStack Compute problems can be quite complex, but looking in
the right places can help solve some of the more common problems. Unfortunately, like
troubleshooting any computer system, there isn't a single command that can help identify
all the problems that you may encounter, but OpenStack provides some tools to help you
identify some problems. Having an understanding of managing servers and networks will
help troubleshoot a distributed cloud environment such as OpenStack.

There's more than one place where you can go to identify the issues, as they can stem from
the environment to the instances themselves. Methodically working your way through the
problems though will help lead you to a resolution.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

283

Troubleshooting OpenStack Storage Service
OpenStack Storage Service (Swift) is built for highly available storage, but there will be times
where something will go wrong, from authentication issues to failing hardware.

How to do it...
Carry out the following steps when encountering the problems presented.

Authentication issues

Authentication issues in Swift occur when a user or a system has been configured with the
wrong credentials. A Swift system that has been supported by OpenStack Authentication
Service (Keystone) will require you to perform authentication steps against Keystone manually
as well as view logs during the transactions. Check the Keystone logs for evidence of user
authentication issues for Swift.

The user will see the following message with authentication issues:

If Swift is working correctly but Keystone isn't, skip to the Troubleshooting OpenStack
Authentication recipe.

Swift can add complexity to authentication issues when ACLs have been applied to containers.
For example, a user might not have been placed in an appropriate group that is allowed
to perform that function on that container. To view a container's ACL, issue the following
command on a client that has the Swift tool installed:

swift -V 2.0 -A http://keystone_server:5000/v2.0 -U tenant:user -K
password stat container

The Read ACL: and Write ACL: information will show which roles are allowed to perform
those actions.

To check a user's roles, run the following set of commands on the Keystone server:

Administrator Credentials
export OS_USERNAME=admin
export OS_PASSWORD=openstack

export OS_AUTH_URL=http://172.16.0.1:5000/v2.0

export OS_TENANT_NAME=cookbook

Get User ID

keystone user-list

Get Tenant ID

www.it-ebooks.info

http://www.it-ebooks.info/

Troubleshooting

284

keystone tenant-list

Use the user-id and tenant-id to get the roles for
that user in that tenant

keystone -I admin -K openstack -N http://172.16.0.1:5000/v2.0/ -T
cookbook role-list --user user-id --tenant tenant-id

Now compare with the ACL roles assigned to the container.

Handling drive failure

When a drive fails in an OpenStack Storage environment, you must first ensure the drive is
unmounted so Swift isn't attempting to write data to it. Replace the drive and rebalance the
rings. This is covered in more detail in the Detecting and replacing failed hard drives recipe in
Chapter 6, Administering OpenStack Storage.

Handling server failure and reboots

The OpenStack Storage service is very resilient. If a server is out of action for a couple of
hours, Swift can happily work around this server being missing from the ring. Any longer than
a couple of hours though, and the server will need removing from the ring. To do this, follow
the steps mentioned in the Removing nodes from a cluster recipe in Chapter 6, Administering
OpenStack Storage.

How it works...
The OpenStack Storage service, Swift, is a robust object storage environment, and as such,
handles a relatively large number of failures within this environment. Troubleshooting Swift
involves running client tests, viewing logs, and in the event of failure, identifying what the
best course of action is.

Troubleshooting OpenStack Authentication
OpenStack Authentication Service (Keystone) is a complex service, as it has to deal with
underpinning the authentication and authorization for the complete cloud environment.
Common problems include misconfigured endpoints, incorrect parameters being stored, and
general user authentication issues, which involve resetting passwords or providing further
details to the end user.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

285

Getting ready
Administrator access is required to troubleshoot Keystone, so we first configure our
environment, so that we can simply execute the relevant Keystone commands.

Administrator Credentials
export OS_USERNAME=admin
export OS_PASSWORD=openstack

export OS_AUTH_URL=http://172.16.0.1:5000/v2.0

export OS_TENANT_NAME=cookbook

How to do it...
Carry out the following steps when encountering the problems presented.

Misconfigured endpoints

Keystone is the central service that directs authenticated users to the correct service, so
it's vital that the users be sent to the correct location. Symptoms include HTTP 500 error
messages in various logs regarding the services that are being accessed, and clients timing
out trying to connect to network services that don't exist. To verify your endpoints in each
region, perform the following command:

keystone endpoint-list

We can drill down into specific service types with the following command. For example, to
show adminURL for the compute service type in all regions.

keystone endpoint-get --service compute --endpoint_type adminURL

An alternative to listing the endpoints in this format is to list the catalog, which outputs the
details in a more human-readable way:

keystone catalog

This provides a convenient way of seeing the endpoints configured.

Authentication issues

From time to time, users will have trouble authenticating against Keystone due to forgotten
or expired details or unexpected failure within the authentication system. Being able to
identify such issues will allow you to restore the service or allow the user to continue using
the environment.

The first place to look will be the relevant logs. This includes the /var/log/nova logs, the /
var/log/glance logs (if related to images), as well as the /var/log/keystone logs.

www.it-ebooks.info

http://www.it-ebooks.info/

Troubleshooting

286

Troubleshooting accounts might include missing accounts, so view the users on the system
using the following command:

keystone user-list

After displaying the user list to ensure an account exists for the user, we can get further
information on a particular user by issuing, for example, the following command, after
retrieving the user ID of a particular user:

keystone user-get 68ba544e500c40668435aa6201e557e4

This will display output similar to the following screenshot:

This allows us to verify that the user has a valid account in a particular tenant.

If a user's password needs resetting, we can execute the following command after getting the
user ID, to set a user's password to (for example) openstack:

keystone user-password-update --pass openstack
68ba544e500c40668435aa6201e557e4

If it turns out a user has been set to disabled, we can simply re-enable the account with the
following command:

keystone user-update --enabled true 68ba544e500c40668435aa6201e557e4

There could be times when the account is working but problems exist on the client side.
Before looking at Keystone for the issue, ensure your environment is set up correctly, in
other words, set the following environment variables:

export OS_USERNAME=kevinj
export OS_PASSWORD=openstack

export OS_AUTH_URL=http://172.16.0.1:5000/v2.0

export OS_TENANT_NAME=cookbook

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

287

How it works...
User authentication issues can be client- or server-side, and when some basic troubleshooting
has been performed on the client, we can use Keystone commands to find out why someone's
user journey has been interrupted. With this, we are able to view and update user details, set
passwords, set them into the appropriate tenants, and disable or enable them, as required.

Submitting bug reports
OpenStack is a hugely successful open source, public and private cloud framework. It has
gained this momentum by individuals and organizations downloading and contributing to it.
By using the software in a vast array of environments and scenarios, and running the software
on a myriad of hardware configurations, you will invariably encounter bugs. In an open source
project, the best thing we can now do is tell the developers about it so they can develop or
suggest a solution for us.

How to do it...
The OpenStack project is available through LaunchPad. LaunchPad is an open source suite of
tools that helps people and teams to work together on software projects and is accessible at
http://launchpad.net/, so the first step is to create an account.

Creating an account on LaunchPad

1. Creating an account on LaunchPad is easy. First, head over to https://login.
launchpad.net/+new_account (or navigate from the home page to the
Login/Register link).

www.it-ebooks.info

http://www.it-ebooks.info/

Troubleshooting

288

2. Fill in your name, e-mail address, and password details, as shown in the
following screenshot:

3. We will then be sent an e-mail with a link to complete the registration. Click on this
to be taken to a confirmation page.

4. We will then be taken to an account page, but no further details need to be
entered here.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

289

Submitting bug reports through LaunchPad

Now that we have an account on LaunchPad, we can submit bug reports. The following links
take us directly to the bug report sections of those projects:

 f Nova: https://bugs.launchpad.net/nova/+filebug

 f Swift: https://bugs.launchpad.net/swift/+filebug

 f Glance: https://bugs.launchpad.net/glance/+filebug

 f Keystone: https://bugs.launchpad.net/keystone/+filebug

 f Dashboard: https://bugs.launchpad.net/horizon/+filebug

 f Quantum: https://bugs.launchpad.net/quantum/+filebug

On submitting a short summary, a search is made to see if a similar bug exists. If it does, click
on the bug and then ensure you click on the This bug affects X people. Does this bug affect
you? link. If multiple people report that they are affected by a bug, its status changes from
reported by a single person to confirmed, helping the Bug Triage team with their work. Please
ensure you add any relevant additional information to the bug report, in support of the issues
you are facing.

If the bug doesn't exist, we will be presented with a form that has a one-liner Summary field
and a free-form textbox in which to put in the required information.

On submitting bugs, try to follow these rules:

 f Include the OS platform, architecture, and software package versions

 f Give step-by-step details on how to recreate the bug

 f Enter what you expected to happen

 f Enter what actually happened instead

 f Be precise—developers like precision

Useful commands to help complete a bug report

The following is a list of useful commands that will help you in the completion of the
bug report:

 f OS System Version: lsb_release -r

 f Architecture: uname -i

 f Package version:

dpkg -l | grep name_of_package

dpkg -s name_of_package | grep Version

www.it-ebooks.info

http://www.it-ebooks.info/

Troubleshooting

290

Pasting logs

Sometimes, there will be a need to submit logging information to support your bug report. This
information can be quite lengthy, so rather than including the text from such logs, within the
bug report, it is encouraged to use a text paste service, which will provide you with a unique
URL that you can use to reference the information within your bug report. For this purpose,
you can use the service at http://paste.openstack.org/.

Ensure you sanitize any data that you paste in public.
This includes removing any sensitive data such as IPs,
usernames, and passwords.

Once a bug is submitted, an e-mail will be sent to the e-mail address used to register with
LaunchPad, and any subsequent updates in relation to the bug will be sent to this e-mail
address, allowing us to track its progress all the way through to a fix being released.

How it works...
OpenStack is developed by a relatively small number of people, compared to the number
of people in the community that end up downloading and using the software. This means
the software gets used in scenarios that developers can't feasibly test or just didn't see as
possible at the time. The net result is that bugs often come out during this time. Being able
to report these bugs is vital, and this is why open source software development is so hugely
successful in creating proven and reliable software.

OpenStack's development lives on LaunchPad, so all bug tracking and reporting is done using
this service. This provides a central tool for the global community and allows end users to
communicate with the relevant projects to submit bugs.

Submitting bugs is a vital element in an open source project. It allows you to shape the future
of the project as well as be part of the ecosystem that is built around it.

It is important to give as much information as possible to the developers when submitting
bugs. Be precise and ensure that the steps to recreate the bug are easy to follow and provide
an explanation of the environment you are working in, to allow the bug to be recreated. If it
can't be recreated, it can't be fixed.

See also
 f You can find out more information about the OpenStack community at

http://www.openstack.org/community/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13

291

Getting help from the community
OpenStack would not be where it is today without the ever-growing community of businesses,
sponsors, and individuals. As with many large OSS projects, support is fantastic, meaning
round-the-clock attention to requests for help, which can sometimes exceed the best efforts
of paid-for support.

How to do it...
There are a number of ways to reach out for support from the excellent OpenStack
community. They are:

IRC Support

Internet Relay Chat has been the mainstay of the Internet since the beginning, and
collaboration from developers and users can be found on the Freenode IRC network.

OpenStack has a channel (or a room) on the Freenode IRC network called #openstack.

There are two ways of accessing IRC, either through the web interface or by using an
IRC client:

 f IRC access using a web browser

1. Accessing the #openstack channel, using a web browser, can be achieved
at http://webchat.freenode.net/.

2. Enter #openstack as the channel.

3. Choose a username for yourself.

4. Complete the CAPTCHA and you will be placed into the #openstack
channel.

 f IRC access using an IRC client

1. Download a suitable IRC client for your operating system
(for example, Xchat).

2. When loading up your client, choose a username (and enter a password if
you have registered your username) and connect to the Freenode network
(irc.freenode.net).

3. When connected, type the following command to join #openstack:
/j #openstack

4. We will now be in the #openstack channel.

www.it-ebooks.info

http://www.it-ebooks.info/

Troubleshooting

292

Mailing list

Subscribing to the mailing list allows you to submit and respond to queries where an instant
response might not be required and is useful if you need your question to reach more
members than the relatively smaller number that is on IRC.

To subscribe to the mailing list, head over to https://launchpad.net/openstack, where
you will see an option to subscribe to the mailing list.

You will need to create a LaunchPad ID and be a member
of the OpenStack project (see the Submitting bug reports
recipe on submitting bugs on how to do this).

Pasting logs

When asking for help, it usually involves copying logs from your environment and sharing
them with the community. To help facilitate this, a web service has been created that allows
you to paste the log entries that can be referred to in an IRC chat or in an e-mail without
having to paste them directly. This can be found at http://paste.openstack.org/.
When you create a new paste, you are given a unique URL that you can then refer to for the
information instead.

Ensure you sanitize any data that you paste in public.
This includes removing any sensitive data such as IPs,
usernames, and passwords.

How it works...
The OpenStack community is what makes OpenStack what it is. It is made up of developers,
users, testers, companies, and individuals with a vested interest in ensuring OpenStack's
success. There are a number of useful places to ask for help when it comes to community
support. This includes IRC and the mailing list.

You are encouraged to post and respond to requests in IRC and on the mailing list, as there
are likely to be many people wanting the same questions answered. There will also be the
development and project teams wanting to understand what is causing issues so they can
help address them.

See also
 f You can find out more information about the OpenStack community at

http://www.openstack.org/community/

www.it-ebooks.info

http://www.it-ebooks.info/

Index
Symbols
40X error 282
500 error 282
/etc/nova/nova.conf file 32
--network_size option 205
--num_networks option 205
#openstack channel 291
--security_groups option 35
--use_deprecated_auth flag 32, 33

A
account

creating, on LaunchPad 287, 288
Account ring 96
Account Server

about 91
configuring 92

ACLs
about 120
using 120-122

active-passive mode 246
alternative release

using 11
Amazon EC2 6
Amazon Elastic Compute Cloud. See

Amazon EC2
authentication 32

B
bare-metal provisioning

MAAS, installing for 214, 215
Barrier 125
Bleeding Edge 84, 143
buckets 111

bug reports
command list 289, 290
submitting 287-290
submitting, through LaunchPad 289

C
capabilities, OpenStack Storage 128, 129
capacity

increasing, for OpenStack
Compute 223, 225

managing, in OpenStack Storage
cluster 130-133

CAPTCHA 291
CentOS image

getting, from eucalyptus.com 41
charms 219
chmod command 22
cloudadmin account

about 19
creating 19, 20

cloudadmin project
about 19
creating 19, 20

cloudadmin role 32
Cloud environments 29
cloud instance

about 29
launching 25-29
terminating 29, 30

cloud-publish-image tool 54
cloud-publish-tarball command 41
cloud-publish-tarball tool 40
cloud-utils package 40
cluster

nodes, removing from 134, 135

www.it-ebooks.info

http://www.it-ebooks.info/

[294]

cluster health
measuring, swift-dispersion-report

tool used 126, 128
CMON 271
Cobbler 214
Collectd

about 255, 256
setting up 256
used, for monitoring instances 255, 259
working 259

collectd client 258
Collectd server 256
collectd-web 258
command line-tools

installing 20-22
compute component 6
configuring

Account Server 92
Container Server 93, 94
database services 12, 13
flat networking 196, 197
flat networking, with DHCP 198-200
Galera 226
Juju 219, 220
Munin Master server 250, 251
MySQL 226
nova-volume 156
nova-volume services 154-157
Object Server 95, 96
OpenStack Compute 14-16, 72, 73
OpenStack Image Service 70, 71
Openstack Storage host 84-86
OpenStack Storage proxy server 90, 91
OpenStack Storage Service 89, 90
roles 57, 58
rsync service 87, 89
service tenant 67-69
service users 67-69
swift-informant 263, 264
VLAN Manager networking 201-203

Container ring 96
containers

about 111
creating, in OpenStack Storage

environment 111
deleting 119

deleting, from OpenStack Storage
account 119, 120

objects, downloading from 118
objects, listing in 116
specific object paths, listing within 116

Container Server
about 93
configuring 93, 94

Corosync
about 236, 237
services, starting 239

corosync-keygen command 238
curl

about 82
used, for testing OpenStack

Storage 100, 101
custom CentOS images

creating 49-54
custom Windows images

creating 46-48

D
Dashboard

URL, for bug reports 289
database cluster

configuring, for OpenStack 228-230
database monitoring 265
database services

configuring 12, 13
demoUser.zip file 33
device

assigning, to ring 98
directories

uploading, to OpenStack Storage
environment 112

disk
adding, to VirtualBox Virtual

Machine 154, 155
Django 167
dnsmasq 10
drive failure

handling 284
drives

preparing, for OpenStack Storage 123-125

www.it-ebooks.info

http://www.it-ebooks.info/

[295]

E
EC2_ACCESS_KEY environment

variable 76
EC2_SECRET_KEY environment

variable 76
Elastic Block Storage 153
endpoint_URL option 91
Essex 11, 83, 142
euca2ools

about 20, 30, 34, 209
installation command 34
used, for assigning floating IPs to

instances 208
used, for attaching volumes to

instances 161
used, for creating volumes 159
used, for defining rules 36
used, for defining security groups 36
used, for deleting keypairs 38
used, for deleting volumes 166
used, for detaching volumes 164
used, for disassociating floating IPs

from instances 209
used, for displaying images 41
used, for listing keypairs 38

euca-add-group command 36
euca-add-keypair command 37, 39
euca-attach-volume command 161
euca-authorize command 36
euca-bundle-image tool 42
euca-delete-keypair tool 38, 39
euca-describe-images command 25
euca-describe-keypairs command 39
euca-describe-volumes command 164
eucalyptus.com

CentOS image, getting from 41
euca-register tool 42
euca-revoke-access command 36
euca-revoke command 35
euca-upload-bundle tool 42
EULA 46

F
failed hard drives

detecting 135, 136
replacing 136

fixed networks
assigning, to tenants automatically 205
modifying, for tenants 206, 207

FlatDHCPManager networking 200
FlatManager networking 198
flat networking

about 195, 196
configuring 196, 197

flat networking, with DHCP
about 195, 198
configuring 198, 200

floating IPs
assigning, to instances

automatically 210, 211
assigning, to instances manually 207, 208
disassociating, from instances

manually 209, 210
used, for configuring OpenStack 235, 236

force-reload command 126
fully qualified domain name (FQDN) 103

G
Galera

about 225
configuring 226
used, for clustering MySQL 225-231

GitHub 252
Glance

about 10, 141, 222
URL, for bug reports 289

Graphite
installing 260, 262
used, for monitoring OpenStack Storage

service 260, 264, 265

H
HA Proxy

configuring, for MySQL Galera load
balancing 232-236

installing, for MySQL 232-235
Horizon 167
hosts

instances, listing across 282
Hyperic

installing 266, 267

www.it-ebooks.info

http://www.it-ebooks.info/

[296]

MySQL, monitoring with 265-270
working 271

I
image details

viewing 149
images

about 40, 141
deleting, from OpenStack Image

Service 149
listing, in OpenStack Image Service

repository 148
managing, with OpenStack Image

Service 147-151
uploading, to OpenStack Compute

environment 42-45
InnoDB 231
installation command, euca2ools 34
installation command, Nova Client tools 34
installation, MAAS

for bare-metal provisioning 214, 215
installing

command line-tools 20-22
Graphite 260, 262
Hyperic 266, 267
Juju 219, 220
munin-node package 251
nova-volume 156
OpenStack Compute packages 9-11
OpenStack Dashboard 168, 169
OpenStack Identity Service 56, 57
OpenStack Image Service 141, 142
OpenStack Storage 83
StatsD 263
swift client tool 109, 110

Instance Console log
viewing 279

instances
about 153
floating IPs, manually associating

to 207, 208
floating IPs, manually disassociating

from 209, 210
launching, OpenStack Dashboard

used 178-181
listing, across hosts 282

monitoring, Collectd used 255, 259
monitoring, Munin used 255, 259
terminating 29, 30
terminating, OpenStack Dashboard

used 181, 182
volumes, attaching to 161-163
volumes, detaching from 164, 165

Internet Relay Chat (IRC)
accessing, IRC client used 291
accessing, web browser used 291

IRC client
used, for accessing IRC 291

IRC support, OpenStack community 291
iSCSI Initiator 158
iSCSI Target 158

J
jdbc (Java Database Connector) 271
Juju

about 168, 219
configuring 219, 220
installing 219, 220
used, for installing OpenStack

services 220-223

K
keypairs

about 21, 37, 169
creating 37
creating, in OpenStack Dashboard 170, 171
deleting, euca2ools used 38
deleting, in OpenStack Dashboard 172
deleting, Nova Client used 39
importing 172, 173
listing, euca2ools used 38
listing, Nova Client used 39
managing 37
managing, in OpenStack

Dashboard 170-174
Keystone

about 19, 55, 222, 285
URL, for bug reports 289

keystone command 206
Kickstart 214

www.it-ebooks.info

http://www.it-ebooks.info/

[297]

L
large objects

uploading, to OpenStack Storage
environment 113- 115

launching
cloud instance 25-29

LaunchPad
about 287
account, creating on 287, 288
bug reports, submitting through 289

libvirt plugin
libvirt pluginabout 255

logging 276
log-level settings, OpenStack

Compute services 278
logs 78

M
MAAS

about 214, 215
installing, for bare-metal

provisioning 214, 215
used, for provisioning bare-metal

hosts 215-218
maas createsuperuser command 216
mailing list support, OpenStack

community 292
memcached 82, 265
Metal-as-a-Service. See MAAS
Milestones 84, 143
misconfigured endpoints 285
multiple objects

deleting 119
uploading, to OpenStack Storage

environment 113
Munin

about 249
setting up 255
setting up, with OpenStack 250
used, for monitoring instances 255, 259
used, for monitoring OpenStack

Compute services 249-253
working 253, 259

Munin Master server
about 250

configuring 250, 251
munin-node package

installing 251
Munin nodes 251
MySQL

about 13, 222
clustering, Galera used 225-231
configuring 226
HA Proxy, installing for 232-235
monitoring, steps 268-270
monitoring, with Hyperic 265-270
OpenStack Image Service, configuring

with 143, 144
MySQL Galera load balancing

HA Proxy, configuring for 232-236
mysql-server 10

N
Network Address Translation (NAT) 195
networking modes, OpenStack

about 195
flat networking 195-197
flat networking with DHCP 195-200
VLAN Manager 195, 201-203

network interfaces
bonding, for redundancy 246, 247

Network Time Protocol 10, 82, 83
no-daemon command 126
nodes

about 267
removing, from cluster 134, 135

nonce package 184
Nova

about 6
URL, for bug reports 289

nova-api 10, 277
nova-cert 10, 277
Nova Client

about 30, 210
used, for assigning floating IPs to

instances 208
used, for attaching volumes to

instances 162
used, for creating volumes 159, 160
used, for deleting keypairs 39
used, for deleting volumes 166

www.it-ebooks.info

http://www.it-ebooks.info/

[298]

used, for detaching volumes 165
used, for disassociating floating IPs

from instances 210
used, for displaying images 41
used, for listing keypairs 39

Nova Client tools
about 34
installation command 34

nova-common 10
nova-compute package 9, 276
nova-consoleauth package 184, 277
nova-console package 184, 277
nova-dhcpbridge 277
nova image-list command 25
nova keypair-add command 39
nova keypair-delete tool 39
nova keypair-list command 39
nova-manage command 19, 20, 32, 187, 276
nova-network 10, 276
nova-network package 196, 201
nova-objectstore 10, 277
novarc file 33
nova-scheduler 9, 276
nova secgroup-add-rule command 36
nova secgroup-add-rule tool 36
nova secgroup-create command 36 36
nova secgroup-delete command 35, 37
Nova services

starting 17, 18
stopping 17, 18

nova-volume
about 153
configuring 156
installing 156

nova-volume services
configuring 154-157
OpenStack Compute, configuring

for 157, 158
no-wait command 126
ntp 10, 82

O
Object ring 96
objects

about 112
deleting 119

deleting, from OpenStack Storage
account 119, 120

downloading, from OpenStack Storage
account 118

downloading, from OpenStack Storage
environment 117

downloading, with -o parameter 117
listing, in container 116
listing, within OpenStack Storage

environment 116, 117
uploading, to OpenStack Storage

environment 112
Object Server

about 95
configuring 95, 96

once command 126
open-iscsi package 157
OpenStack

about 6, 195, 213, 273
bug reports, submitting 287-290
configuring, floating IP address

used 235, 236
database cluster, configuring for 228-230
database services, configuring 12, 13
fixed networks, assigning to tenants 205
fixed networks, modifying for

tenants 206, 207
flat networking, configuring 196, 197
floating IPs, automatically assigning to

instances 210, 211
floating IPs, disassociating manually

from instances 209, 210
floating IPs, manually associating to

instances 207, 208
logs, pasting 290
Munin, setting up with 250
networking modes 195
per-project (tenant) IP ranges,

configuring 203, 204
VLAN Manager networking,

configuring 201-203
OpenStack Authentication Service

about 284
troubleshooting 285-287

OpenStack community
about 291, 292
IRC support 291

www.it-ebooks.info

http://www.it-ebooks.info/

[299]

mailing list support 292
pasting logs support 292
URL 290

OpenStack Compute
about 6, 153, 214
administering 31
capacity, increasing 223, 225
cloud instance, launching 25-29
command line-tools, installing 20-22
configuring 14-16, 72, 73
configuring, for nova-volume 157, 158
configuring, for OpenStack Image

Service 144, 145
instances, terminating 29, 30
packages, installing 9-11
sample machine image, uploading 23-25
sandbox environment, creating with

VirtualBox 6-9
services, checking 274, 275
using, with OpenStack Identity

Service 74-76
OpenStack Compute environment

about 31
CentOS image, getting from

eucalyptus.com 41
custom CentOS images, creating 49-54
custom Windows images, creating 46-48
euca2ools, used for uploading

images to 42-45
keypairs, creating 37
keypairs, managing 37
public cloud images, using 40
roles, configuring 57, 58
security groups, creating 35, 36
security groups, deleting 36
security groups, managing 34
service tenant, configuring 67-69
service users, configuring 67-69
tenant, creating 59
Ubuntu Cloud images, getting from

ubuntu.com 40, 41
user accounts, managing 32-34
user accounts, modifying 34
users, creating 32, 33
users, deleting 33

OpenStack Compute host 32

OpenStack Compute packages
installing 9-11

OpenStack Compute Services
about 278
checking 273-276
log-level settings 278
monitoring, with Munin 249-253
troubleshooting 278-282

OpenStack Compute Services Logs
about 276
nova-api 277
nova-cert 277
nova-compute 276
nova-console 277
nova-consoleauth 277
nova-dhcpbridge 277
nova-manage 276
nova-network 276
nova-objectstore 277
nova-scheduler 276

OpenStack Dashboard
about 214
installing 168, 169
keypairs, creating 170, 171
keypairs, deleting 172
keypairs, importing 172, 173
keypairs, managing 170-174
security groups, creating 175
security groups, deleting 177
security groups, editing for rules

addition 176
security groups, editing for rules

deletion 176
security groups, managing 174-177
tenants, adding to 184-187
used, for connecting users to

instances 183, 184
used, for launching instances 178-181
used, for terminating instances 181, 182
user details, updating 190
user password, updating 190
users, adding 188, 189
users, deleting 189, 190
users, managing 188-194

OpenStack Dashboard logs 277
OpenStack Identity Service

about 55, 73

www.it-ebooks.info

http://www.it-ebooks.info/

[300]

endpoints, defining 62-67
installing 56, 57
OpenStack Compute, using with 74-76
OpenStack Storage, configuring

with 104-107
users, creating in 60-62

OpenStack Image Service
about 70, 141
configuring 70, 71
configuring, with MySQL 143, 144
configuring, with OpenStack

Storage 145-147
image details, viewing 149
images, deleting 149
images, listing 148
images, managing with 147-151
installing 141, 142
OpenStack Compute, configuring

for 144, 145
remotely stored image, registering 151, 152

OpenStack Object Storage 78
OpenStack services

installing, Juju used 220-223
resilience, increasing 237-245

OpenStack Storage
about 141
account daemons, controlling 126
Account Server, configuring 92
capabilities 128, 129
cluster, managing with swift-init

tool 125, 126
configuring, with OpenStack Identity

Service 104-107
container daemons, controlling 125
Container Server, configuring 93, 94
daemons, controlling 126
device, assigning to ring 98
drives, preparing for 123-125
failed hard drives, detecting 135, 136
failed hard drives, replacing 136
installing 83
nodes, removing from cluster 134, 135
object daemons, controlling 125
Object Server, configuring 95, 96
OpenStack Image Service, configuring

with 145-147
replication, configuring 87, 89

ring 96-98
ring, creating 98
ring, rebalancing 98
sandbox environment, creating 78-82
services 82
SSL access, setting up 102, 103
starting 99
stopping 99
testing 99
testing, curl used 100, 101
testing, swift command used 101, 102

OpenStack Storage account
containers, deleting from 119, 120
objects, deleting from 119, 120
objects, downloading from 118

OpenStack Storage cluster
capacity, managing 130-133
managing, with swift-init tool 125, 126
usage statistics, collecting from 136-139

OpenStack Storage environment
ACLs, using 120-122
containers, creating 111
containers, deleting 119
directories, uploading to 112
drive failure, handling 284
large objects, uploading to 113-115
multiple objects, deleting 119
multiple objects, uploading to 113
objects, deleting 119
objects, downloading from 117
objects, downloading from container 118
objects, downloading with -o

parameter 117
objects, listing within 116, 117
objects, uploading to 112
reboots, handling 284
server failure, handling 284
swift client tool, installing 109, 110

Openstack Storage host
configuring 84-86

OpenStack Storage logs 277
OpenStack Storage proxy

controlling 125
OpenStack Storage Proxy Server

about 112
configuring 90, 91

www.it-ebooks.info

http://www.it-ebooks.info/

[301]

OpenStack Storage sandbox environment
creating 78-82

OpenStack Storage service
monitoring, Graphite used 260, 264, 265
monitoring, StatsD used 260, 264, 265

OpenStack Storage Service
about 283
configuring 89, 90
troubleshooting 283, 284

P
Pacemaker

about 236
services, starting 239

pasting logs support, OpenStack
community 292

per-project (tenant) IP ranges
configuring 203, 204

Personal Package Archives (PPA) 11, 84, 142
post-boot setup scripts 31
private images

making, public 150
project

about 203
user, deleting from 34
user, removing from 33, 34

public cloud images
using 40

PXE Boot service 214

Q
qemu-kvm package 46
Quantum

URL, for bug reports 289

R
RabbitMQ 222, 265
rabbitmq-server 10
RDP client

downloading 48
reboots

handling 284

redundancy
network interfaces, bonding for 246, 247

reload command 126
remotely stored image

registering 151, 152
replication

about 86
configuring, in OpenStack Storage 87, 89

resilience
increasing, of OpenStack services 237-245

restart command 126
ring, OpenStack Storage 96-98

creating 98
rebalancing 98

roles
about 57
configuring 57, 58

RRD (Round Robin Database) 253
rsyncd.conf file 96
rsync service

about 86
configuring 87, 89

rules
defining, euca2ools used 36
defining, Nova Client used 36
removing, from security group 35

S
sample machine image

uploading 23-25
sandbox environment

about 32
creating, with VirtualBox 6-9

security groups
about 34, 174
creating 35, 36
creating, in OpenStack Dashboard 175
defining, euca2ools used 36
defining, Nova Client used 36
deleting 36
deleting, in OpenStack Dashboard 177
editing, for rules addition 176
editing, for rules deletion 176
managing 34
managing, in OpenStack

Dashboard 174-177

www.it-ebooks.info

http://www.it-ebooks.info/

[302]

rule, removing from 35
server failure

handling 284
service endpoints

about 62
defining 62-67

service tenant
configuring 67-69

service users
configuring 67-69

SeveralNines 271
Shoot The Other Node In The

Head. See STONITH
shutdown command 126
single points of failure (SPOF) 213
specific object paths

listing, within container 116
SpringSource 265
SSH keypairs 37
SSL access

setting up 102, 103
SSL certificates 102
start command 126
StatsD

installing 263
used, for monitoring OpenStack Storage

service 260, 264, 265
status command 126
STONITH 240
stop command 126
sudo command 19
Swift

about 78, 260, 283
URL, for bug reports 289

swift-account service 82
swift-bench tool 128, 129
swift client tool

about 116
installing 109, 110

swift command
about 82
used, for testing OpenStack

Storage 101, 102
swift-container service 82
swift-dispersion-populate tool 127
swift-dispersion-report tool

used, for measuring cluster health 126, 128

swift-informant
about 263
configuring 263, 264

swift-init tool
used, for managing OpenStack Storage

cluster 125, 126
swift-object service 82
swift-proxy service 82
swift-ring-builder command 98
synchronous multi-master plugin 231

T
TCP port 22 35, 177
TCP port 80 35, 177
TCP port 443 35
TempAuth

about 91
URL 91

tenant-create option 59
tenants

about 59
adding, to OpenStack Dashboard 184-187
creating 59
fixed network, modifying 206, 207
fixed networks, assigning to 205
users, adding to 191, 192
users, removing from 192

TFTP Daemon service 214
troubleshooting

OpenStack Authentication Service 285-287
OpenStack Compute Services 278-282
OpenStack Storage Service 283, 284

U
Ubuntu

about 168, 214, 219
URL, for downloading 6
URL, for releases 40

Ubuntu Cloud Images
getting, from ubuntu.com 40, 41

ubuntu.com
Ubuntu Cloud images, getting from 40, 41

Ubuntu image
uploading 148
URL, for downloading 40

www.it-ebooks.info

http://www.it-ebooks.info/

[303]

usage statistics
collecting, from OpenStack Storage

cluster 136-139
user accounts

managing, in OpenStack Compute
environment 32-34

modifying, in OpenStack Compute
environment 34

user details
updating, in OpenStack Dashboard 190

user password
updating, in OpenStack Dashboard 190

users
adding, in OpenStack Dashboard 188, 189
adding, to tenants 191, 192
connecting, to instances with OpenStack

Dashboard and VNC 183, 184
creating, in OpenStack Compute

environment 32, 33
creating, in OpenStack Identity

Service 60-62
deleting, from project 34
deleting, from OpenStack Compute

environment 33
deleting, in OpenStack Dashboard 189, 190
managing, in OpenStack

Dashboard 188-194
removing, from project 33, 34
removing, from tenants 192

V
Vagrant 9, 82
VBoxManage command 7
VIRTIO 47
VirtualBox

URL 78
URL, for downloading 6
used, for creating sandbox

environment 6-9
VirtualBox Virtual Machine

disk, adding to 154, 155
virtualization 31
virtualization products 9, 82

virtual machine
creating, steps 80, 81
specifications 79

VLAN Manager networking
about 195, 201
configuring 201-203

VMware Player 9, 82
VMware Server 9, 82
VNC

used, for connecting users to
instances 183, 184

VNC client 46
VNC Console option 184
volume-delete option 166
volumes

about 153
attaching, to instances 161-163
creating, euca2ools used 159
creating, Nova Client used 159, 160
deleting, euca2ools used 166
deleting, Nova Client used 166
detaching, from instances 164, 165

VRRP (Virtual Redundant
Router Protocol) 234

W
Wake-On-Lan (WOL) 218
web browser

used, for accessing IRC 291
Web Service Gateway Interface (WSGI) 167
Wordpress 219
WSGIScriptAlias directive 265
WSGI (Web Service Gateway Interface) 265

X
XFS filesystem 86, 123
xfsprogs 82

Z
zipfile bundle 32
zone 129

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
OpenStack Cloud Computing Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

OpenNebula 3 Cloud
Computing
ISBN: 978-1-849517-46-1 Paperback: 314 pages

Set up, manage, and maintain your Cloud and learn
solutions for datacenter virtualization with this step-by-
step practical guide

1. Take advantage of open source distributed file-
systems for storage scalability and high-availability

2. Build-up, manage and maintain your Cloud
without previous knowledge of virtualization and
cloud computing

3. Install and configure every supported hypervisor:
KVM, Xen, VMware

4. Step-by-step, focused on Ubuntu/Debian
distributions, but with general how-to working with
every GNU/Linux distribution

Amazon Web Services:
Migrating your .NET
Enterprise Application
ISBN: 978-1-849681-94-0 Paperback: 336 pages

Evaluate your Cloud requirements and successfully
migrate your .NET Enterprise application to the Amazon
Web Services Platform

1. Get to grips with Amazon Web Services from a
Microsoft Enterprise .NET viewpoint

2. Fully understand all of the AWS products including
EC2, EBS, and S3

3. Quickly set up your account and manage
application security

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

Microsoft Windows Azure
Development Cookbook
ISBN: 978-1-849682-22-0 Paperback: 392 pages

Over 80 advanced recipes for developing scalable
services with the Windows Azure platform

1. Packed with practical, hands-on cookbook recipes
for building advanced, scalable cloud-based
services on the Windows Azure platform explained
in detail to maximize your learning

2. Extensive code samples showing how to use
advanced features of Windows Azure blobs, tables
and queues.

3. Understand remote management of Azure
services using the Windows Azure Service
Management REST API

4. Delve deep into Windows Azure Diagnostics

Citrix XenServer 6.0
Administration
Essential Guide
ISBN: 978-1-849686-16-7 Paperback: 364 pages

Deploy and manage XenServer in your enterprise to
create, integrate, manage, and automate a virtual
datacenter quickly and easily

1. This book and eBook will take you through
deploying XenServer in your enterprise, and teach
you how to create and maintain your datacenter.

2. Manage XenServer and virtual machines using
Citrix management tools and the command line.

3. Organize secure access to your infrastructure
using role-based access control.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Starting OpenStack Compute
	Introduction
	Creating a sandbox environment
with VirtualBox
	Installing OpenStack Compute packages
	Configuring database services
	Configuring OpenStack Compute
	Stopping and starting Nova services
	Creating a cloudadmin account and project
	Installation of command line-tools
	Uploading a sample machine image
	Launching your first cloud instance
	Terminating your instance

	Chapter 2: Administering OpenStack Compute
	Introduction
	Creating and modifying user accounts
	Managing security groups
	Creating and managing keypairs
	Using public cloud images
	Alternative upload method using euca2ools
	Creating custom Windows images
	Creating custom CentOS images

	Chapter 3: Keystone OpenStack Identity Service
	Introduction
	Installing OpenStack Identity Service
	Configuring roles
	Creating tenants
	Adding users
	Defining service endpoints
	Configuring the service tenant and
service users
	Configuring OpenStack Image Service to use OpenStack Identity Service
	Configuring OpenStack Compute to use OpenStack Identity Service
	Using OpenStack Compute with OpenStack Identity Service

	Chapter 4: Installing OpenStack Storage
	Introduction
	Creating an OpenStack Storage sandbox environment
	Installing the OpenStack Storage services
	Configuring storage
	Configuring replication
	Configuring OpenStack Storage Service
	Configuring the OpenStack Storage
proxy server
	Configuring Account Server
	Configuring Container Server
	Configuring Object Server
	Making the Object, Account, and
Container rings
	Stopping and starting OpenStack Storage
	Testing OpenStack Storage
	Setting up SSL access
	Configuring OpenStack Storage with OpenStack Identity Service

	Chapter 5: Using OpenStack Storage
	Introduction
	Installing the swift client tool
	Creating containers
	Uploading objects
	Uploading large objects
	Listing containers and objects
	Downloading objects
	Deleting containers and objects
	Using OpenStack Storage ACLs

	Chapter 6: Administering OpenStack Storage
	Introduction
	Preparing drives for OpenStack Storage
	Managing the OpenStack Storage cluster with swift-init
	Checking cluster health
	OpenStack Storage benchmarking
	Managing capacity
	Removing nodes from a cluster
	Detecting and replacing failed hard drives
	Collecting usage statistics

	Chapter 7: Glance OpenStack Image Service
	Introduction
	Installing OpenStack Image Service
	Configuring OpenStack Image Service
with MySQL
	Configuring OpenStack Compute with OpenStack Image Service
	Configuring OpenStack Image Service with OpenStack Storage
	Managing images with OpenStack
Image Service
	Registering a remotely stored image

	Chapter 8: Nova Volumes
	Introduction
	Configuring nova-volume services
	Configuring OpenStack Compute for
nova-volume
	Creating volumes
	Attaching volumes to instances
	Detaching volumes from an instance
	Deleting volumes

	Chapter 9: Horizon OpenStack Dashboard
	Introduction
	Installing OpenStack Dashboard
	Keypair management in OpenStack Dashboard
	Security group management by using OpenStack Dashboard
	Launching instances by using
OpenStack Dashboard
	Terminating instances by using OpenStack Dashboard
	Connecting to instances by using
OpenStack Dashboard and VNC
	Adding new tenants by using
OpenStack Dashboard
	User management by using OpenStack Dashboard

	Chapter 10: OpenStack Networking
	Introduction
	Configuring Flat networking
	Configuring Flat networking with DHCP
	Configuring VLAN Manager networking
	Configuring per-project (tenant) IP ranges
	Automatically assigning fixed networks
to tenants
	Modifying a tenant's fixed network
	Manually associating floating IPs
to instances
	Manually disassociating floating IPs
from instances
	Automatically assigning floating IPs

	Chapter 11: In the Datacenter
	Introduction
	Installing MAAS for bare-metal provisioning
	Using MAAS for bare-metal provisioning
of hosts
	Installing and configuring Juju
	Installing OpenStack services using Juju
	Increasing OpenStack Compute capacity
	MySQL clustering using Galera
	Configuring HA Proxy for MySQL Galera
load balancing
	Increasing resilience of OpenStack services
	Bonding network interfaces for redundancy

	Chapter 12: Monitoring
	Introduction
	Monitoring Compute services with Munin
	Monitoring instances using Munin
and Collectd
	Monitoring the storage service using
StatsD/Graphite
	Monitoring MySQL with Hyperic

	Chapter 13: Troubleshooting
	Introduction
	Checking OpenStack Compute Services
	Understanding logging
	Troubleshooting OpenStack
Compute Services
	Troubleshooting OpenStack Storage Service
	Troubleshooting OpenStack Authentication
	Submitting bug reports
	Getting help from the community
	Index

	Index

